

Pinpointing Anomalies in Large-Scale Traceroute Measurements

Romain Fontugne & Kenjiro Cho November 10, 2016

On going research work conducted at IIJ-II

In collaboration with:

- Emile Aben (RIPE NCC)
- Cristel Pelsser (University of Strasbourg)
- Randy Bush (IIJ)

Agenda

Background:

- Understanding Internet health
- Challenges

Detect and locate Internet congestion:

- Analysis of traceroutes from RIPE Atlas
- Differential RTT and robust statistics

Results:

• Study cases: DDoS attack and BGP leak

Understanding Internet health?

Understanding Internet health?

Understanding Internet health?

Manual observations and operations

- Traceroute / Ping / Operators' group mailing lists
- Time consuming
- Slow process
- Small visibility

 \rightarrow Our goal: Pinpointing network disruptions (i.e. congestion and packet loss)

Silly solution: frequent traceroutes to the whole Internet!

- \rightarrow Doesn't scale
- \rightarrow Overload the network

Better solution: mine results from deployed platforms

- \rightarrow Cooperative and distributed approach
- \rightarrow Using existing data, no added burden to the network

Actively measures Internet connectivity

- Ethernet port
- Automatically perform active measurements: ping, traceroute, DNS, SSL, NTP and HTTP
- All results are collected by RIPE NCC

RIPE Atlas: coverage

9300+ active probes!

Two repetitive large-scale measurements

- Builtin: traceroute every 30 minutes to all DNS root servers (\approx 500 server instances)
- Anchoring: traceroute every 15 minutes to 189 collaborative servers

Analyzed dataset

- May to December 2015
- 2.8 billion IPv4 traceroutes
- 1.2 billion IPv6 traceroutes

Traceroute to "www.target.com"

~\$	tracero	ute www.taro	get.com	
tra	aceroute	to target,	30 hops max, 60	byte packets
1	A	0.775 ⁻ ms	0.779 ms 0.874	ms
2	В	0.351 ms	0.365 ms 0.364	ms
3	С	2.833 ms	3.201 ms 3.546	ms
4	Target	3.447 ms	3.863 ms 3.872	ms

Round Trip Time (RTT) between B and C? Report abnormal RTT between B and C?

• Noisy data

Monitor delays with traceroute?

~\$ traceroute			www.target.com								
tra	aceroute	to	targ	get,	30 h	iops	max,	60	byte	packets	
1	A	0.	775	ms	0.77	9 ms	5 Ø.1	874	ms		
2	В	0.	351	ms	0.36	55 ms	s 0.1	364	ms		
3	С	2.	833	ms	3.20)1 ms	5 3.	546	ms		
4	Target	3.	.447	ms	3.86	53 ms	3.	872	ms		

 $RTT_C - RTT_B = RTT_{CB}$?

What is the RTT between B and C?

 $RTT_C - RTT_B = RTT_{CB}$?

- No!
- Traffic is asymmetric
- *RTT_B* and *RTT_C* take **different return paths!**

What is the RTT between B and C?

 $RTT_C - RTT_B = RTT_{CB}$?

- No!
- Traffic is asymmetric
- RTT_B and RTT_C take different return paths!
- Differential RTT: $\Delta_{CB} = RTT_C RTT_B = d_{BC} + e_p$

Problem with differential RTT

Monitoring Δ_{CB} over time:

Differential RTT: $\Delta_{CB} = x_0$

Differential RTT: $\Delta_{CB} = \{x_0, x_1\}$

Differential RTT: $\Delta_{CB} = \{x_0, x_1, x_2, x_3, x_4\}$

Proposed Approach: Use probes with different return paths

Differential RTT: $\Delta_{CB} = \{x_0, x_1, x_2, x_3, x_4\}$

Median Δ_{CB} :

- Stable if a few return paths delay change
- Fluctuate if delay on BC changes

Median Diff. RTT: Example

Tier1 link, 2 weeks of data, 95 probes:

• **Stable** despite noisy RTTs (not true for average)

Normally distributed

Detecting congestion

Significant RTT changes:

Confidence interval not overlapping with the normal reference

Worst case: router is not responding

- Cannot obtain RTT values
- Need to identify the faulty link

Packet forwarding model

Learn usual paths from past traceroutes:

In case of packet loss:

Query the model for the expected next hop

 \rightarrow Link AB is dropping packets!

Analyzed dataset

- Atlas builtin/anchoring measurements
- From May to Dec. 2015
- Observed 262k IPv4 and 42k IPv6 links

We found a lot of congested links! Let's see only two significant examples

Study case: DDoS on DNS root servers

Two attacks:

- Nov. 30th 2015
- Dec. 1st 2015

Almost all server are anycast

- Congestion at the 531 sites?
- Found 129 instances altered by the attacks

The attack, commonly known as **Distributed Denial of Service** (DDoS) attack, took place on two separate occasions.

The first DDoS attack to the Internet's backbone root servers launched on November 30 that lasted 160 minutes (almost 3 hours), and the second one started on December 1 that lasted almost an hour.

Massive Attacks Knocked Many of the 13 Root Servers Offline

Observed congestion

- Certain servers are affected only by one attack
- Continuous attack in Russia

Unaffected root servers

Very stable delay during the attacks

- Thanks to anycast!
- Far from the attackers

Congested links for servers F, I, and K

 \rightarrow Concentration of malicious traffic in IXPs

Not only with Google... but about 170k prefixes!

Rerouted traffic has congested Level3 (120 reported links)

• Example: 229ms increase between two routers in London!

29/31

Congestion in Level3

Reported links in London:

 \rightarrow Traffic staying within UK/Europe may also be altered

Monitor delays with the Atlas platform

• Billions of (noisy) traceroutes

Detect and locate Internet congestion

- Robust statistical analysis
- Diverse root causes: remote attacks, routing anomalies, etc...
- Give a lot of new insights on reported events

On going work with RIPE NCC:

• Online detection and reports for network operators

References: http://romain.iijlab.net/ihr/