

Internet Infrastructure Review

Vol. 32

Internet Infrastructure Review

August 2016 Vol.32

Exec	cutive Summary	3
1. In	frastructure Security	4
1.1	Introduction	4
1.2	Incident Summary	4
1.3	Incident Survey	11
1.3.1	DDoS Attacks	11
1.3.2	Malware Activities	13
1.3.3	SQL Injection Attacks	16
1.3.4	Website Alterations	16
1.4	Focused Research	18
1.4.1	Creating Profiles for the Volatility Framework	18
1.4.2	Hardening Windows Clients Against Malware Infections (Part 2)	21
1.5	Conclusion	27
2. Br	oadband Traffic Report	28
2.1	Overview	28
2.2	About the Data	28
2.3	Daily Usage Levels for Users	29
2.4	Usage by Port	31
2.5	The Impact of the Kumamoto Earthquakes	33
2.6	Conclusion	33
3. Te	chnology Trends	34
3.1	Overview	34
3.2	Data Center Requirements	34
3.3	Data Center Optimization	35
3.4	Integrated Data Centers	35
3.5	Interaction Between Data Centers and IT Systems	36
3.6	co-IZmoSD Container-Based Data Centers for Research and Development	37
3.7	An Operating System for Data Centers	39
3.8	The Future of Software-Defined Data Centers	39

Executive Summary

Executive Summary

Recently, terms such as DDoS attacks, cyber security, CSIRT, and SOC have begun to be used in the news, and it feels as if the variety of phenomena, events, and incidents that occur on the Internet as social infrastructure have become more familiar to us. While I am glad that it is becoming more common to place importance on understanding these factors to make effective use of IT, I am once again feeling the gravity of our responsibilities as a communications provider. This report discusses the results of the various ongoing surveys and analysis activities that IIJ, as a service provider, carries out to support the Internet and cloud infrastructure, and enable our customers to continue to use them safely and securely. We also regularly present summaries of technological development as well as important technical information.

In Chapter 1, we analyze the incidents that took place between April and June, 2016, and examine the trends that were observed. In Japan the new fiscal year begins in April, and attacks targeting this vulnerable period, along with those carried out by Hacktivists since last year, show no signs of settling. In fact, you could almost say they have become a routine occurrence. Meanwhile, there were no incidents that interfered with meetings during the international conferences related to the Ise-Shima Summit in May, perhaps due to measures implemented by both the public and private sectors. In our focused research we discuss the Volatility Framework, and explain techniques for analyzing memory images during forensic investigations. I would also encourage readers to take a look at the section about hardening Windows clients to prevent malware infections.

In Chapter 2, we analyze the growth in broadband traffic compared to that of last year. Broadband traffic has grown at a faster rate than last year, and although the growth of mobile traffic has slowed over the past year, it has still more than doubled. This trend is expected to remain unchanged going forward. We must continue to analyze trends in broadband and mobile traffic so we are able to respond to future changes in traffic patterns.

In Chapter 3, we discussed software-defined container-based data centers under technology trends. Until now the IT resources and facility resources at data centers were controlled and operated separately. However, by implementing functions for abstracting these resources and controlling them via software, we were able to use power efficiently according to the changes in load associated with the operating status of IT resources. The core of this research began from the development of software for controlling facility equipment, and is now expanding to incorporate the control of IT resources as well. This development is opening up new horizons for Internet infrastructure.

The Internet has moved on from the age when it was a network that simply linked computers together via Internet protocol. It is now an accumulation of intelligence that encompasses a variety of interconnected computers, as well as the connection of people to each other. It may be that it is the responsibility of management to continue to talk to future generations while constantly reviewing the status quo, both to bolster security and ensure that the social infrastructure that the Internet has become is not misused in the coming years.

Through activities such as these, IIJ continues to strive towards improving and developing our services on a daily basis, while maintaining the stability of the Internet. We will keep providing a variety of services and solutions that our customers can take full advantage of as infrastructure for their corporate activities.

Yoshikazu Yamai

Mr. Yamai is an Executive Managing Officer of IIJ and Director of the Service Infrastructure Division.

Upon joining IIJ in June 1999, he was temporarily transferred to Crosswave Communications, Inc., where he was engaged in WDM and SONET network construction, wide-area LAN service planning, and data center construction, before returning to his post in June 2004. After his return he was in charge of IIJ's Service Operation Division. From April 2016 he joined the Infrastructure Operation Division, and now oversees the overall operation of corporate IT services at IIJ. He also heads IIJ's data center operations, and he played a key role in the establishment of the modular "Matsue Data Center Park," which was the first in Japan to use outside-air cooling.

1. Infrastructure Security

Hardening Windows Clients Against Malware Infections

1.1 Introduction

This report is a summary of incidents that IIJ responded to, based on information obtained by IIJ for the purpose of operating a stable Internet, information obtained from observed incidents, information obtained through our services, and information obtained from companies and organizations that IIJ has cooperative relationships with. This volume covers the period of time from April 1 through June 30, 2016. In this period a number of hacktivism-based attacks were once again carried out by Anonymous and other groups. A large number of DDoS attacks occurred, along with information leaks and website defacements. Information leaks caused by targeted attacks also occurred both in Japan and overseas. It has been announced that approximately 6.97 million pieces of personal information may have leaked in an incident at a major travel agency in Japan. It also came to light that a large volume of password information had leaked in the past from sources such as major SNS services, and multiple attacks seeming to use this information have been observed. As shown here, many security-related incidents continue to occur across the Internet.

1.2 Incident Summary

Here, we discuss incidents handled and responded to by IIJ, between April 1 and June 30, 2016. Figure 1 shows the distribution of incidents handled during this period*1.

■ Activities of Anonymous and Other Hacktivist Groups

Attack activities by hacktivists such as Anonymous continued during this period. In correspondence with various events and assertions, DDoS attacks and information leaks targeted various companies and government-related sites.

As a protest against the drive hunting of dolphins and small whales in Japan, there have been intermittent DDoS attacks since last September which are believed to be performed by Anonymous. Various domestic sites have continued to be affected by similar damages during this time period as well (OpKillingBay/OpWhales/OpSeaWorld). Since April, however, the number of such attacks targeting Japan has dropped significantly. The reasons for this are not clear, but one possibility is that the attackers have lost interest and moved on to other attack campaigns. That said, this doesn't necessarily mean the attacks are over, since other attackers may continue the attack campaigns in the future. In any case, the attack activities of hacktivist groups like Anonymous are such that it is difficult to determine whether a series of attack campaigns has ended or will continue. Thus, instead of responding when an attack campaign begins, you should always be prepared and be able to respond whenever an attack occurs.

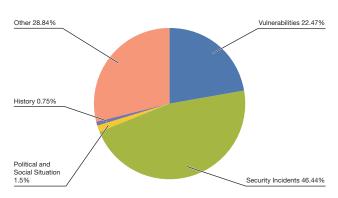


Figure 1: Incident Ratio by Category (April 1 to June 30, 2016)

Anonymous began an attack campaign named Oplcarus that targeted major financial institutions around the world in January 2016, and these attacks have continued intermittently. This came to prominence again in May, when the Bank of Greece and a large number of other financial institutions in countries such as Cyprus, France, and the Philippines fell victim to these attacks. Then through June the scope of these attacks expanded to include even more financial institutions, with some financial institutions in Japan also listed as attack targets, but no observable damages have occurred.

^{*1} Incidents in this report are split into five categories: vulnerabilities, political and social situations, history, security incidents or other.

Vulnerabilities: Responses to vulnerabilities in network equipment, server equipment or software commonly used across the Internet or in user environments. Political and Social Situations: Responses to attacks stemming from international conferences attended by VIPs and international conflicts, and other related domestic and foreign circumstances and international events.

History: Warnings/alarms, detection and response to incidents for attacks that occur on the day of a historically significant date that have a close connection to a next event

Security Incidents: Unexpected incidents and related responses such as wide spreading of network worms and other malware; DDoS attacks against certain websites. Other: Security-related information, and incidents not directly associated with security problems, including high traffic volume associated with a notable event.

One big issue was internal data being disclosed on the internet related to the compromises at Gamma International in August 2014 and HackingTeam in July 2015. These companies develop the FinFisher and RCS surveillance software, respectively. In April 2016, the anonymous hacker Phineas Fisher*2, who was responsible for these attacks, disclosed the details of the techniques used to breach HackingTeam. Another disclosure was a video on YouTube in May showing the compromise of a Catalan police organization website. It was also revealed that Bitcoins worth 10,000 euros were stolen from a certain bank, and donated to a Kurdish group active in the Rojava region during the same time period. He (or she) is justifying this behavior by claiming that disclosing information stolen from companies and stealing money from banks is a form of "Ethical Hacking," and will result in improving the security of computers used by the general public. On the other hand, in interviews they stated that these actions are "for the lulz," so it could be said that there are elements similar to the activities of groups such as LulzSec, which created a storm of controversy in 2011. Currently it appears they are acting alone, but due to the impact of the incidents they have been responsible for in the past, we will continue to keep a close eye on future developments.

■ Vulnerabilities and Responses

During this period many fixes were released for Microsoft's Windows*3*4*5*6*7*8*9*10, Internet Explorer*11*12*13, Edge*14*15*16, and Office*17*18*19. Updates were also released for Adobe Systems' Flash Player, Acrobat, and Reader. A quarterly update was provided for Oracle's Java SE, fixing many vulnerabilities. Several of these vulnerabilities were exploited in the wild before patches were released.

In server applications, a quarterly update was released by Oracle, fixing many vulnerabilities in the Oracle database server and many other Oracle products.

A researcher showed that a practical attack against AES-GCM for TLS is possible when the Initialization Vector (IV) is reused. It was confirmed that some implementations, such as the IBM Domino Web server and Radware, were affected by this vulnerability and subsequently patched.

- *2 "Hack Back! (@GammaGroupPR)" (https://twitter.com/GammaGroupPR).
- *3 "Microsoft Security Bulletin MS16-039 Critical: Security Update for Microsoft Graphics Component (3148522)" (https://technet.microsoft.com/en-us/library/security/MS16-039).
- *4 "Microsoft Security Bulletin MS16-040 Critical: Security Update for Microsoft XML Core Services (3148541)" (https://technet.microsoft.com/en-us/library/security/MS16-040).
- *5 "Microsoft Security Bulletin MS16-053 Critical: Cumulative Security Update for JScript and VBScript (3156764)" (https://technet.microsoft.com/en-us/library/security/MS16-053).
- *6 "Microsoft Security Bulletin MS16-055 Critical: Security Update for Microsoft Graphics Component (3156754)" (https://technet.microsoft.com/en-us/library/security/MS16-055).
- *7 "Microsoft Security Bulletin MS16-056 Critical: Security Update for Windows Journal (3156761)" (https://technet.microsoft.com/en-us/library/security/MS16-056).
- *8 "Microsoft Security Bulletin MS16-057 Critical: Security Update for Windows Shell (3156987)" (https://technet.microsoft.com/en-us/library/security/MS16-057).
- *9 "Microsoft Security Bulletin MS16-069 Critical: Cumulative Security Update for JScript and VBScript (3163640)" (https://technet.microsoft.com/en-us/library/security/MS16-069).
- *10 "Microsoft Security Bulletin MS16-071 Critical: Security Update for Microsoft Windows DNS Server (3164065)" (https://technet.microsoft.com/en-us/library/security/MS16-071).
- *11 "Microsoft Security Bulletin MS16-037 Critical: Cumulative Security Update for Internet Explorer (3148531)" (https://technet.microsoft.com/en-us/library/security/MS16-037).
- *12 "Microsoft Security Bulletin MS16-051 Critical: Cumulative Security Update for Internet Explorer (3155533)" (https://technet.microsoft.com/en-us/library/security/MS16-051).
- *13 "Microsoft Security Bulletin MS16-063 Critical: Cumulative Security Update for Internet Explorer (3163649)" (https://technet.microsoft.com/en-us/library/security/MS16-063).
- *14 "Microsoft Security Bulletin MS16-038 Critical: Cumulative Security Update for Microsoft Edge (3148532)" (https://technet.microsoft.com/en-us/library/security/MS16-038).
- *15 "Microsoft Security Bulletin MS16-052 Critical: Cumulative Security Update for Microsoft Edge (3155538)" (https://technet.microsoft.com/en-us/library/security/MS16-052).
- *16 "Microsoft Security Bulletin MS16-068 Critical: Cumulative Security Update for Microsoft Edge (3163656)" (https://technet.microsoft.com/en-us/library/security/MS16-068).
- *17 "Microsoft Security Bulletin MS16-042 Critical: Security Update for Microsoft Office (3148775)" (https://technet.microsoft.com/en-us/library/security/MS16-042).
- *18 "Microsoft Security Bulletin MS16-054 Critical: Security Update for Microsoft Office (3155544)" (https://technet.microsoft.com/en-us/library/security/MS16-054).
- *19 "Microsoft Security Bulletin MS16-070 Critical: Security Update for Microsoft Office (3163610)" (https://technet.microsoft.com/en-us/library/security/MS16-070).

April Incidents

	S	1st: The website of N	TT Corporation was target	ed in a DDoS attack by Anonymous,	causing it to b	e temporarily	inaccessible (OpKillingBay).			
2	S		Ist: It was discovered that incidents of unauthorized logins on the Mobage service provided by DeNA were due to identity fraud by third parties, and information on up to approximately 100,000 users may have been exposed.							
1	S	The contents were d	th: A large number of internal documents exposing tax evasion at companies were leaked from Panamanian law firm Mossack Fonseca. he contents were disclosed to the public. üddeutsche Zeitung, "Panama Papers: This is the leak" (http://panamapapers.sueddeutsche.de/articles/56febff0a1bb8d3c3495adf4/).							
5	S		tails of around 50 million T and publicly disclosed.	urkish citizens, amounting to two-t	hirds of the po	pulation, were	leaked from a Turkish			
6 7	V	and fixed.		yer that could allow unauthorized to						
3	V	12th: Multiple vulne "Badlock Bug" (http:		n Windows and Samba, and patche	s were released	d for each.				
0 /	V	updates such as MS	6-037, as well as seven im	in Summary for April 2016, and release portant updates. 2016" (https://technet.microsoft.co		•	-			
2	V	the product, and no "Where to get answe	iixes were made. ers about QuickTime 7 or Q	ties were found in Apple's QuickTim uickTime 7 Pro" (https://support.app s; New Vulnerabilities Announced" (I	ole.com/en-us/	HT201175).				
13	0			Act on Cyber Security and the Act o						
15	V	of 136 vulnerabilities	i.	update for multiple products include 016" (http://www.oracle.com/technology)						
16 17 18	S	information related of Type to perform an Conference of Type to perform an Conference of Type to the potential of the potenti	o 430,000 individuals may S command injection atta	nation due to unauthorized access to	oited a zero-d					
19	S	MongoDB configura "BREAKING: Massiv	22nd: A security researcher found that data on 93.4 million Mexican voters had been made publicly available online. This was caused by a MongoDB configuration error. 'BREAKING: Massive Breach of Mexican Voter Data" https://mackeeper.com/blog/post/217-breaking-massive-databreach-of-mexican-voter-data).							
21 22 23	S	individuals may have command injection a "Notice regarding th (http://www.j-wave.o	23rd: It was discovered that unauthorized access had occurred at the website of J-WAVE, Inc., and personal information related to 640,000 individuals may have been leaked. The attacker exploited a zero-day vulnerability in Keitai Kit for Movable Type to perform an OS command injection attack. "Notice regarding the potential leak of personal information due to unauthorized access to the J-WAVE website: J-WAVE 81.3 FM RADIO" (http://www.j-wave.co.jp/topics/1604_info.htm) (in Japanese). "Notice regarding the results of a special investigative committee investigation into the potential of personal information leaks due to unauthorized access: J-WAVE 81.3 FM RADIO"							
25	S			e was a malware infection in the SW nat occurred back in February. SWIF						
26	V	enabled was discove in attacks. Apache Software Fo	27th: A vulnerability (S2-032) in Apache Struts 2 that could allow arbitrary code execution when Dynamic Method Invocation (DMI) is enabled was discovered and fixed. The National Police Agency also issued an alert due to observations of this vulnerability being targeted in attacks. Apache Software Foundation, "S2-032" (https://struts.apache.org/docs/s2-032.html). National Police Agency, "Regarding observations of access targeting a vulnerability in Apache Struts 2" (https://www.npa.go.jp/cyberpolice/detect/pdf/20160427.pdf) (in Japanese).							
28 29	S	platform site due to	remote unauthorized acce	ncluding credit card information mass. SEA" (http://netsea.co.jp/press/2016			s "NETSEA" B2B wholesale			
30	S	individuals may have command injection a	been leaked. The attacke attack.	ss had occurred at the website of Ei r exploited a zero-day vulnerability in tak of customer information" (http://	n Keitai Kit for	Movable Type	to perform an OS			
			_				*Dates are in Japan StandardTim			
.egend	V	Vulnerabilities	S Security Incidents	Political and Social Situation	H	History	Other			

Multiple vulnerabilities in the Apache Struts 2 Web application framework were discovered and fixed, including one (S2-032) that could allow arbitrary code execution when Dynamic Method Invocation (DMI) is enabled, and another (S2-037) that could allow arbitrary code execution when the REST plug-in is enabled. A vulnerability in the ImageMagick image processing software that could allow arbitrary OS commands to be executed when specially-crafted content is opened was discovered and fixed. Also, an OS command injection vulnerability in a plug-in for the Movable Type CMS was discovered and fixed. The affected plug-in is Keitai Kit for Movable Type, which is used to produce content for mobile phones. Attacks targeting these vulnerabilities were observed immediately after the release of fixed versions, and alerts were issued by JPCERT/CC and the National Police Agency. Notably, attacks targeting the vulnerability in Keitai Kit for Movable Type were ongoing prior to the developer releasing a fixed version, and leaks of personal information in large quantities occurred through multiple websites.

■ Information Leaks Due to Targeted Attacks

During this period there was once again a string of incidents both in Japan and overseas that involved malware infections on computers at organizations, as well as resulting information leaks. In June, it was announced that approximately 6.97 million pieces of personal information (including more than 4,000 valid passport numbers) may have leaked from a major travel agency in Japan. In this incident, an internal computer was infected with malware after a staff member received an email made to appear as if it was sent by a major client, in this case an airline company, and opened a file attached to this email. It is now known that the attacker then gradually expanded the scope of the intrusion to other internal computers and servers before creating data files that contained large quantities of personal information, and attempting to externally transmit these data files.

In addition to this, since mid-June there have been successive announcements by local authorities, such as city offices, where unauthorized communications with external parties had occurred after computers in their offices were infected with malware. It is not clear whether or not the series of incidents are connected, but the content of the attack emails sent to these local authorities seems to indicate that it is highly likely they were sent to a large number of unspecified organizations.

It was also found that unauthorized access by a third party in June targeting a system used by the Democratic National Committee (DNC) in the United States led to the leak of internal documents and other information related to the presidential primary elections. CrowdStrike, the security vendor that investigated this incident, determined that two different Russian attack groups called COZY BEAR (APT29) and FANCY BEAR (APT28) were responsible, and announced that they had compromised internal systems at the DNC as early as 2015. Prior to this, U.S. Director of National Intelligence (DNI) James Clapper had warned that cyber attacks were being conducted against multiple organizations in the United States connected to the presidential elections. It is also believed that the DNC compromise was part of Russian intelligence activity targeting systems related to political activities in the United States.

After this, a hacker calling themselves GUCCIFER 2.0 claimed to be responsible for the DNC compromise through their blog, and published documents they said were obtained from the DNC*20. GUCCIFER 2.0 has denied being connected to other Russian hacker groups, insisting that they acted alone on their blog and through the media. However, there are many puzzling details, so it is also possible that this could be a misdirection by Russia. Either way, these incidents underscore the extreme difficulty of attribution, or the identification of culprits behind cyber attacks. The importance of attribution has been pointed out in recent years.

■ Mass Password Information Leaks

During this period, a series of discoveries revealed that large quantities of password information had previously been leaked from services such as SNS. It is believed that these discoveries were related to data acquired through compromises perpetrated by Russian hacker groups between 2011 and 2013. The information leaks were discovered when the data began to be sold to the general public this year through Russian message boards and sites selling this information on the Dark Web. In each of these cases the scale of the leak was very extensive, including credentials for around 360 million MySpace accounts, around 167 million LinkedIn accounts, around 127 million Badoo accounts, around 100 million VK accounts, and around 65 million TumbIr accounts. Also, the MySpace and LinkedIn leaks included unsalted SHA-1 hashed password information. This makes it relatively easy to

^{*20 &}quot;GUCCIFER 2.0" (https://guccifer2.wordpress.com/).

May Incidents

1	S	4th: The website of the Bank of Greece was targeted in a DDoS attack by Anonymous, causing it to be temporarily inaccessible (Oplcarus).							
3	V	th: A vulnerability in ImageMagick that could allow arbitrary OS commands to be executed when content is opened was discovered and fixed. mageMagick Security Issue - ImageMagick" (https://www.imagemagick.org/discourse-server/viewtopic.php?f=4&t=29588). mageTragick" (https://imagetragick.com/).							
4	V	5th: Multiple vulnerabilities in Adobe Acrobat and Reader that could allow unauthorized termination and arbitrary code execution were discovered and fixed. "Security Updates Available for Adobe Acrobat and Reader" (https://helpx.adobe.com/security/products/acrobat/apsb16-14.html).							
5	V	11th: Microsoft published their Security Bulletin Summary for May 2016, and released a total of sixteen updates, including eight critical updates such as MS16-051, as well as eight important updates. "Microsoft Security Bulletin Summary for May 2016" (https://technet.microsoft.com/library/security/ms16-may).							
7 8	S	11th: It was discovered that unauthorized logins through identity fraud by third parties had taken place on the Ameba service run by CyberAgent, and information on 50,905 users may have been exposed. CyberAgent, Inc., "Notice regarding unauthorized logins to 'Ameba' and password reset request" (https://www.cyberagent.co.jp/newsinfo/press/detail/id=11977) (in Japanese).							
9	S	11th: A police report was forwarded to a prosecutor on potential charges for obstructing business by damaging a computer by a male student in the first year of high school, who has been suspected of launching a cyber attack against the website of the junior high school in Osaka he had attended.							
11	V	12th: Multiple vulnerabilities in Adobe Flash Player that could allow unauthorized termination or arbitrary code execution were discovered and fixed. "Security updates available for Adobe Flash Player" (https://helpx.adobe.com/security/products/flash-player/apsb16-15.html).							
12	S	13th: It was discovered that user email addresses and password information had leaked from TumbIr in early 2013. It was later confirmed that user information and credentials related to over 65 million users were being sold on Dark Web markets. "TumbIr Staff" (https://staff.tumbIr.com/post/144263069415/we-recently-learned-that-a-third-party-had).							
14 15 16	V	16th: Apple released iOS 9.3.2, OS X El Capitan 10.11.5, and Security Update 2016-003, fixing multiple vulnerabilities, including one that could allow an application to execute arbitrary code with kernel privileges. tvOS 9.2.1 and watchOS 2.2.1 were also released on the same day. 'About the security content of iOS 9.3.2" (https://support.apple.com/en-us/HT206568). "About the security content of OS X El Capitan v10.11.5 and Security Update 2016-003" (https://support.apple.com/en-us/HT206567). "About the security content of tvOS 9.2.1" https://support.apple.com/en-us/HT206566).							
17	S	18th: The Tokyo Metropolitan Police Department arrested a male from Nagasaki on suspicion of violating the Unauthorized Computer Access Law. The charges are for unauthorized access to the SNS and cloud service accounts of entertainers and other individuals. Unauthorized logins were performed on services such as iCloud by guessing passwords based on names and birth dates, to view private images.							
19	S	18th: DDoS attacks targeted DNS service provider NS1, affecting customer services such as Imgur. "A Note From NS1's CEO: How We Responded To Last Week's Major, Multi-Faceted DDoS Attacks" (https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks).							
21	S	19th: It was discovered that the email addresses and passwords of around 167 million users had actually leaked from LinkedIn in 2012, rather than the approximately 6.5 million that was initially reported. It was also confirmed that account information was being sold on Dark Web markets. "Protecting Our Members Official LinkedIn Blog" (https://blog.linkedin.com/2016/05/18/protecting-our-members).							
23	S	19th: The master key for the TeslaCrypt ransomware was suddenly released by the developers, and decryption tools were made available by security vendors. "ESET releases new decryptor for TeslaCrypt ransomware" (http://www.welivesecurity.com/2016/05/18/eset-releases-decryptor-recent-variants-teslacrypt-ransomware/).							
25	V	20th: A researcher revealed that a practical attack against AES-GCM for TLS is possible if the Initialization Vector (IV) is reused. "GitHub - nonce-disrespect / nonce-disrespect: Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS" (https://github.com/nonce-disrespect/nonce-disrespect).							
26	S								
28	26th: A vulnerability in Cisco network products that could cause a DoS condition when specially-crafted IPv6 Neighbor Discovery (ND) packets are received was discovered. This vulnerability affected all versions of IOS, IOS XR, and IOS XE, among other products. Cisco is preparing to release fixed versions. "Cisco Products IPv6 Neighbor Discovery Crafted Packet Denial of Service Vulnerability" (https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20160525-ipv6).								
30	28th: It was discovered that email addresses and password information for about 360 million users who had created accounts prior to 2013 had leaked from MySpace. It was also confirmed that account information was being sold on Dark Web markets. "Myspace Blog" (https://myspace.com/pages/blog).								
		*Dates are in Japan Standard Time							
Legend	V	Vulnerabilities S Security Incidents P Political and Social Situation H History O Other							

crack the password, so there was a high risk that the data could be used for exploits right away. Because of this, a number of incidents thought to be related to these leaks have occurred.

In June, there were unauthorized logins by third parties at multiple services such as GitHub and GoToMyPC. These were list-based attacks that leveraged password information leaked from other websites, and targeted users that reuse the same password on multiple sites, and links have been identified with the aforementioned mass password information leaks.

There was also a series of hijackings starting in May that targeted the SNS accounts of notable public figures in the technology industry, such as Twitter co-founder Biz Stone, Facebook CEO Mark Zuckerberg, and Google CEO Sundar Pichai. A group calling themselves the OurMine Team have claimed responsibility for these hijackings. This series of account hijackings is thought to be one of the after effects of the aforementioned password information leaks.

Anticipating the damages that can be caused by such account hijackings that target users who reuse their passwords, some companies have started to preemptively address this issue. For example, Facebook, Amazon, and Netflix have analyzed user password information leaked from other services, and are forcing users to reset their password if they are found to have been using the same password on their service. Such measures began to be implemented after the leak of around 150 million password information records from Adobe in 2013. Although having users avoid reusing passwords across multiple services is a fundamental measure that prevents these kinds of hijackings, in reality, a large number of users reuse passwords, so in the current environment it will be difficult to eliminate such damages.

There are also websites that collect large quantities of leaked password information, and issue alerts to users. For example, security researcher Troy Hunt launched a free service, "Have I been pwned?," after the Adobe leaks in 2013*21. Users can search for their email address on this website to check whether or not their password information has been leaked. It also offers a service that sends you a notification when affected by information leaks in the future if you register your email address beforehand. However, one must exercise extreme caution when using such services, since some sites that claim to offer similar services are simply aimed at collecting information from users.

■ Government Agency Initiatives

The 42nd G7 Summit (the G7 Ise-Shima Summit) was held in late May 2016. Mainly through cooperation between government ministries and the private sector, there was a promotion of security initiatives to counter cyber attacks that may occur in relation to the summit taking place. As a result, there were no incidents that interfered with these meetings while they were being held, or with the other various meetings that G7-related ministers held from April onward*22.

Other

Since the second half of last year, damages caused by ransomware infections have been escalating in Japan and overseas, and this trend has continued over the current survey period. The TeslaCrypt ransomware had one of the highest numbers of infections, but in May, the master key for decryption was released by the developers without prior notice, and security vendors made decryption tools available. Observations indicated that TeslaCrypt activity was already stagnating before this, so it appears that it was shut down for some reason.

For the past several years there have been concerns regarding the growing impact of scams committed through business emails, referred to as Business Email Compromise (BEC) schemes. A typical BEC technique involves attackers hijacking the email accounts of corporate CEOs, and obtaining funds illegally by sending emails to internal staff members ordering them to transfer money to specific accounts. According to an annual report*23 made public by the FBI's Internet Crime Complaint Center (IC3), there were 7,838 incidents reported in the United States in 2015, involving 263 million dollars in damages. Because damages from such

^{*21 &}quot;Have I been pwned? Check if your email has been compromised in a data breach" (https://haveibeenpwned.com/).

^{*22} National center of Incident readiness and Strategy for Cybersecurity, "Initiatives for the G7 Ise-Shima Summit" (http://www.nisc.go.jp/conference/cs/ciip/dai07/pdf/07shirvou0201.pdf) (in Japanese).

^{*23} FBI, "2015 Internet Crime Report" (https://pdf.ic3.gov/2015_IC3Report.pdf).

June Incidents

1	S	Exploit Kit was used	for the Lurk in	nfections, but	sing the Lurk illegal money remittan due to this arrest, Angler Exploit Ki			d in Russia. The Angler			
2		(http://blog.talosinte	Cisco Talos Blog: Connecting the Dots Reveals Crimeware Shake-up" http://blog.talosintel.com/2016/07/lurk-crimeware-connections.html). "Locky, Dridex, and Angler among cybercrime groups to experience all in activity Symantec Connect"								
3			nttp://www.symantec.com/connect/blogs/locky-dridex-and-angler-among-cybercrime-groups-experience-fall-activity).								
4	S				and password information of around ormation was being sold on Dark Wo			aked from the Badoo social			
5	S				password information for about 100 t account information was being sol			d 2012 had leaked from a			
7	S				l password information for about 51 tions. It was also confirmed that acc						
8	S				ized access by an external party aga pieces of customer information. Cu						
9			potential leak	of personal in	formation due to unauthorized acce						
10		access targeting the	company serv	ers of our par	10: Regarding the potential leak of 'c tner JTB Group" (https://www.nttdc nnouncement about 'a potential leak	como.co.	.jp/info/notice/pa	age/160614_00_m.html) (in			
11 /	1	(http://blogs.yahoo.d	co.jp/yjtravel_ e regarding th	staff/2097068 e potential lea	2.html) (in Japanese). k of personal information due to una ormation0614.html) (in Japanese).						
12	0	14th The FBI (IC3) is:	sued an alert r	egarding the	spread of damages through Busines			c) schemes.			
13		(https://www.ic3.go			s E-mail Compromise: The 3.1 Billior	i Dollar Sc	cam"				
14	V	updates such as MS	16-063, as wel	l as eleven im	n Summary for June 2016, and release portant updates. 2016" (https://technet.microsoft.com						
15	S	Committee (DNC). S	ecurity vendo	r CrowdStrike	ized access by an external party aga reported that two different Russian the Democratic National Committee	n attack g					
17					t-intrusion-democratic-national-con			de acception con discoursed			
18	V	and fixed.			yer that could allow unauthorized to ver" (https://helpx.adobe.com/secur						
19	V	16th: A vulnerability discovered and fixed	-	pache Struts 2	that could allow arbitrary code exe	cution wh	hen the REST plu	ıg-in is enabled was			
20					struts.apache.org/docs/s2-037.html						
21	S	corresponding accor	unts were rese	et.	s by third parties through identity fr ck" (https://github.com/blog/2190-g						
22	S				ETH (Ethereum) were illegally trans y in the code. The Ethereum develo						
23		its original state by I	performing a h Re: DAO Vulne	nard fork. erability - Ethe	reum Blog" (https://blog.ethereum.c		-				
24		"Update3: The DAO (https://blog.daohub			aved us - DAOhub" k-8d18ca45011b?gi=ddf32dc5304a#	.2kgccwfk	ca).				
25	S	20th: It was discovered that unauthorized logins by third parties through identity fraud had occurred against the Citrix GoToMyPC service. The passwords for all accounts were reset. "GoToMyPC® System Status - GoToMyPC Password Issues" (http://status.gotomypc.com/incidents/s2k8h1xhzn4k).									
27	S	22nd: Leaks of perso		_	authorized access by a third party o	ccurred a	gainst sites buil	t using the "SPIRAL EC" EC			
28		"Regarding leaks of	personal infor	mation throug	h unauthorized access to 'SPIRAL E						
29	S	•			54 million U.S. voters had been mad seeper.com/blog/post/239-another-u		-	online.			
30	S	S 27th: A 17-year-old youth was rearrested on suspicion of violating the Unauthorized Computer Access Law for allegedly compromising an educational information system (SEI-Net) and the internal LAN of a school in Saga Prefecture. This youth had previously been arrested on June 6 on suspicion of violating the Unfair Competition Prevention Law for allegedly distributing an unauthorized viewing program for B-CAS. Saga Prefecture, "Incidents of unauthorized access targeting school education networks"									
		(http://www.pref.sag	уа.ig.jp/кiji003	o48348/INdex.h	iuiii) (iii Japanese).			*Dates are in Japan StandardTime			
Legend	V	Vulnerabilities	S Securit	ty Incidents	P Political and Social Situation	H	History	Other			

incidents have continued to spread further since the beginning of this year, another alert was issued in June. This alert indicated that damages caused by BEC are now 1,300% higher than at the beginning of 2015. There have not yet been many reports of such incidents occurring in Japan, but going forward it will be necessary to keep a close eye on the spread of damage.

1.3 Incident Survey

1.3.1 DDoS Attacks

Today, DDoS attacks on corporate servers are almost a daily occurrence, and the methods involved vary widely. However, most of these attacks do not utilize advanced knowledge such as vulnerabilities, but aim to hinder or delay services by causing large volumes of unnecessary traffic to overwhelm network bandwidth or server processes.

■ Direct Observations

Figure 2 shows the state of DDoS attacks handled by the IIJ DDoS Protection Service between April 1 and June 30, 2016.

This shows the number of traffic anomalies judged to be attacks based on IIJ DDoS Protection Service criteria. IIJ also responds to other DDoS attacks, but these incidents have been excluded here due to the difficulty in accurately understanding and grasping the facts behind such attacks.

There are many methods that can be used to carry out a DDoS attack, and the capacity of the environment attacked (bandwidth and server performance) will largely determine the degree of impact. Figure 2 splits DDoS attacks into three categories: attacks against bandwidth capacity*24, attacks against servers*25, and compound attacks (several types of attacks against a single target conducted at the same time).

During these three months, IIJ dealt with 267 DDoS attacks. This averages out to 2.93 attacks per day, which is a slight decrease in comparison to our prior report. Server attacks accounted for 62.55% of DDoS attacks, while compound attacks accounted for 34.08%, and bandwidth capacity attacks 3.37%.

The largest scale attack observed during this period was classified as a compound attack, and resulted in 2.84 Gbps of bandwidth using up to 635,000 pps packets.

Of all attacks, 81.27% ended within 30 minutes of the start of the attack, 17.23% lasted between 30 minutes and 24 hours, and 1.50% lasted over 24 hours. The longest sustained attack for this period was a compound attack that lasted for two days, 17 hours, and 15 minutes (65 hours and 15 minutes).

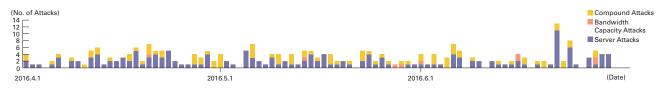


Figure 2: Trends in DDoS Attacks

^{*24} Attack that overwhelms the network bandwidth capacity of a target by sending massive volumes of larger-than-necessary IP packets and fragments. When UDP packets are used, it is referred to as a UDP flood, while ICMP flood is used to refer to the use of ICMP packets.

^{*25} TCP SYN flood, TCP connection flood, and HTTP GET flood attacks. In a TCP SYN flood attack, a large number of SYN packets that signal the start of TCP connections are sent, forcing the target to prepare for a large number of incoming connections, resulting in the waste of processing capacity and memory. TCP connection flood attacks establish a large number of actual TCP connections. In a HTTP GET flood a TCP connection with a Web server is established, and then a large number of GET requests in the HTTP protocol are sent, also resulting in a waste of processing capacity and memory.

We observed an extremely large number of IP addresses as the attack sources, whether domestic or foreign. We believe this is due to the use of IP spoofing*26 and botnets*27 to conduct the DDoS attacks.

■ Backscatter Observations

Next we present DDoS attack backscatter observations*28 through the honeypots*29 of the IIJ malware activity observation project, MITF. Through backscatter observations, portions of DDoS attacks against external networks may be detectable as a third-party without intervening.

For the backscatter observed between April 1 and June 30, 2016, Figure 3 shows the source IP addresses classified by country, and Figure 4 shows trends in the number of packets by port.

The port most commonly targeted by DDoS attacks observed was port 80/TCP used for Web services, and accounted for 40.3% of the total. This was followed by 53/UDP used for DNS at 27.5%, so the top two ports alone accounted for 67.8% of the total. Attacks were also observed on 443/TCP used for HTTPS, 22/TCP used for SSH, and both 27015/UDP and 25565/TCP that are sometimes used for gaming communications, as well as typically unused ports such as 42668/TCP, 50401/TCP, 44461/TCP, and 3306/UDP.

Communications at 53/UDP, which have been observed often since February 2014, remained high at an average of around 4,900 packets per day until May 25. From the next day it dropped to a daily average of about 20 packets, which represents a return to levels

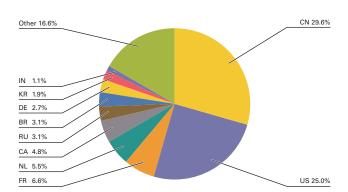


Figure 3: DDoS Attack Targets by Country According to Backscatter Observations

observed prior to February 2014. This same phenomenon was seen in the status of random communications under "1.3.2 Malware Activities." It is believed that the perpetrators of the DNS water torture attacks*30 we had observed up until this date either changed their attack method starting from this day, or ceased their attacks.

Looking at the source of backscatter packets by country thought to indicate IP addresses targeted by DDoS attacks in Figure 3, China accounted for the largest percentage at 29.6%. The United States and France followed at 25.0% and 6.6%, respectively.

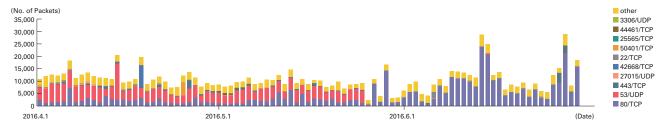


Figure 4: Observations of Backscatter Caused by DDoS Attacks (Observed Packets, Trends by Port)

- *26 Impersonation of a source IP address. Creates and sends an attack packet that has been given an IP address other than the actual IP address used by the attacker to make it appear as if the attack is coming from a different person, or from a large number of individuals.
- *27 A "bot" is a type of malware that after the infection, conducts an attack upon receiving a command from an external C&C server. A network made up from a large number of bots is called a botnet.
- *28 The mechanism and limitations of this observation method, as well as some of the results of IIJ's observations, are presented in Vol.8 of this report (http://www.iij.ad.jp/en/company/development/iir/pdf/iir_vol08_EN.pdf) under "1.4.2 Observations on Backscatter Caused by DDoS Attacks."
- *29 Honeypots placed by the MITF, a malware activity observation project operated by IIJ. See also "1.3.2 Malware Activities."
- *30 Secure64 Software Corporation, "Water Torture: A Slow Drip DNS DDoS Attack" (https://blog.secure64.com/?p=377). For an explanation in Japanese, refer to the following document written by Mr. Yasuhiro Orange Morishita of Japan Registry Services. "DNS Water Torture Attacks" (http://2014.seccon.jp/dns/dns_water_torture.pdf) (in Japanese).

Now we will take a look at ports targeted in attacks where a large number of backscatter packets were observed. For attacks against Web servers (80/TCP and 443/TCP), there were attacks against the servers of a hosting provider in China on April 6 and April 12, and attacks against the servers for hosting blogs of a U.S. software development company on April 26. There were also attacks against a message board site related to automobiles on May 27, and attacks against multiple servers owned by a Canadian hosting provider on May 29. In addition to these, there were continued attacks against the servers of a U.S. hosting provider since June 8, and attacks on the reverse proxy servers of a U.S. security firm from June 27 through June 28.

Notable DDoS attacks during the current survey period that were detected by IIJ's backscatter observations included attacks by Anonymous against a government website for the state of North Carolina in the U.S. from May 15 through May 20.

1.3.2 Malware Activities

Here, we will discuss the results of the observations of the MITF*31, the malware activity observation project operated by IIJ. The MITF uses honeypots*32 connected to the Internet in a manner similar to general users in order to observe communications that arrive over the Internet. Most appear to be communications by malware selecting a target at random, or scans attempting to search for a target to attack.

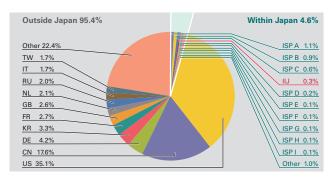


Figure 5: Sender Distribution (by Country, Entire Period under Study)

■ Status of Random Communications

Figure 5 shows the distribution of source IP addresses by country for incoming communications to the honeypots from April 1 through June 30, 2016. Regarding the total volume (incoming packets), because communications to 53/UDP were significantly higher than other ports during the survey period for this report, we have plotted trends for 53/UDP on Figure 6, while other ports are shown on Figure 7. The MITF has set up numerous honeypots for its observations. Here, we have taken the average number per honeypot, and shown the trends by

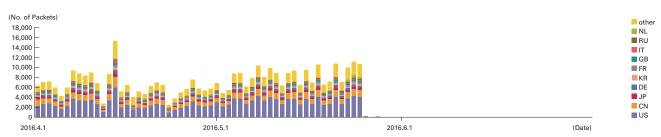


Figure 6: Incoming Communications at Honeypots (by Date, 53/UDP, per Honeypot)

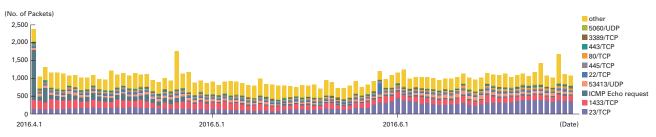


Figure 7: Incoming Communications at Honeypots (by Date, by Target Port, per Honeypot)

^{*31} An abbreviation of Malware Investigation Task Force. The Malware Investigation Task Force (MITF) began its activities in May 2007, observing malware activity in networks through the use of honeypots in an attempt to understand the state of malware activities, to collect technical information for countermeasures, and to link these findings to actual countermeasures.

^{*32} A system designed to record attacker and malware activities and their behavior by emulating vulnerabilities and simulating the damages caused by attacks.

country in Figure 6, and trends for incoming packet types (top ten) in Figure 7. Additionally, in these observations we made an adjustment so that multiple TCP connections to a specific port are counted as one attack, such as attacks against MSRPC.

Most of the communications that reached the honeypots during the survey period for this report were on 53/UDP used by DNS, 23/TCP used by telnet, ICMP echo requests, 445/TCP used by Microsoft OSes, and 1433/TCP used by Microsoft's SQL Server. Communications were also observed on 80/TCP and 443/TCP used by Web servers, 22/TCP used by SSH, 3389/TCP used by RDP, and 5060/UDP used by SIP.

As with the survey period for the previous report, there was a high number of 53/UDP communications. Upon investigating these communications, DNS name resolution requests from a range of source IP addresses allocated mainly to the United States and China were being repeatedly received on the IP address of a certain MITF honeypot. Multiple corresponding domain names were also confirmed, and many were sites covering a wide range of fields, such as online shopping, games, and science fiction novels in China. Because the majority of these communications involved repeated name resolution attempts for "(random).(existing domain)," we believe these to be DNS water torture attacks*33. These were no longer observed after May 26, 2016, so it is believed that either the attackers have changed their methods, or ceased the attacks altogether.

Continuing on from the previous survey period, there was also an increase in 1433/TCP. Upon investigation, we found that a large number of these communications were from IP addresses allocated to China, as well as many other IP addresses.

As with the survey period for the previous report, there were a high number of 53413/UDP communications. Upon investigation, we found that these communications were attacks targeting a vulnerability in Netis and Netcore brand routers. The vulnerability was reported by Trend Micro in August 2014*34, and JPCERT/CC reported there was a spike in attacks between April and June of 2015*35. 23/TCP communications rose overall, with a particularly notable increase in June. Upon investigation, we found that packets were arriving from IP addresses allocated to a wide range of countries, with the majority allocated to China and Brazil. Over 400,000 unique IP addresses appeared during this period. In early April there was also an increase in ICMP echo requests from multiple IP addresses allocated to Japan.

■ Malware Activity in Networks

Figure 8 shows the distribution of the source where malware artifacts were acquired from during the period under study, while Figure 9 shows trends in the total number of malware artifacts acquired. Figure 10 shows trends in the number of unique artifacts. In Figure 9 and Figure 10, the trends in the number of acquired artifacts show the actual number of artifacts acquired per day*36, while the number of unique artifacts is the number of artifact variants categorized in accordance with their hash digests*37. Artifacts are also identified using anti-virus software, and a color-coded breakdown of the top 10 variants is shown along with the malware names. As with our previous report, for Figure 9 and Figure 10 we have detected Conficker using multiple anti-virus software packages, and removed any Conficker results when totaling the data.

On average, 74 artifacts were acquired per day during the period under study, while there were 15 unique artifacts per day. After investigating the undetected artifacts more closely, included were multiple SDBOT families (a type of IRC bot) observed from IP addresses allocated to countries such as Taiwan, India, and Vietnam.

- *33 Secure64 Software Corporation, "Water Torture: A Slow Drip DNS DDoS Attack" (https://blog.secure64.com/?p=377). For an explanation in Japanese, refer to the following document written by Mr. Yasuhiro Orange Morishita of Japan Registry Services. "DNS Water Torture Attacks" (http://2014.seccon.jp/dns/dns_water_torture.pdf) (in Japanese). The MITF honeypots do not query authoritative servers or cache servers when they receive DNS query packets, so they do not become a part of attacks.
- *34 "Netis Routers Leave Wide Open Backdoor" (http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/)
- *35 "JPCERT/CC Internet Threat Monitoring Report [April 1, 2015 June 30, 2015]" (http://www.jpcert.or.jp/english/doc/TSUBAMEReport2015Q1_en.pdf).
- *36 This indicates malware acquired by honeypots.
- *37 This value is calculated by utilizing a one-way function (hash function) that outputs a fixed-length value for each input. Hash functions are designed to produce a different output for practically every different input. We cannot guarantee the uniqueness of artifacts through hash values alone, given that obfuscation and padding may result in artifacts of the same malware having different hash values. The MITF understands this limitation when using this method as a measurement index.

About 33% of undetected artifacts were in text format. Many of these text format artifacts were HTML 404 or 403 error responses from Web servers, and we believe these were due to infection activities of old malware such as worms continuing despite the closure of the download sites that newly-infected PCs access in an attempt to download malware. A MITF independent analysis revealed that during the current period under observation 85.1% of malware artifacts acquired were worms, 11.2% were bots, and 3.7% were downloaders. In addition, the MITF confirmed the presence of 7 botnet C&C servers*38 and 5 malware distribution sites.

■ Conficker Activity

Including Conficker, an average of 8,543 artifacts were acquired per day during the period under study for this report, representing 372 unique artifacts. Conficker accounted for 99.1% of the total artifacts acquired, and 96.2% of the unique artifacts. Since

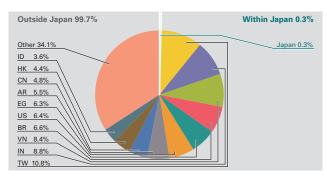


Figure 8: Distribution of Acquired Artifacts by Source (by Country, Entire Period under Study, Excluding Conficker)

Conficker remains the most prevalent malware by far, we have omitted it from the figures in this report. Compared to the previous survey period, the total number of artifacts acquired in this survey period decreased by approximately 28% and the number of unique artifacts decreased by about 13%, which is a gradual overall decline. According to the observations by the Conficker Working Group*39, as of July, 2016, a total of just over 550,000 unique IP addresses are infected. This indicates a drop to about 17% of the 3.2 million PCs observed in November 2011, but it shows that infections are still widespread.

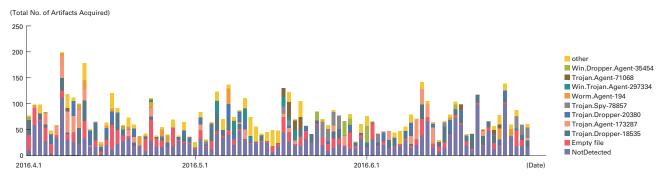


Figure 9: Trends in the Total Number of Malware Artifacts Acquired (Excluding Conficker)

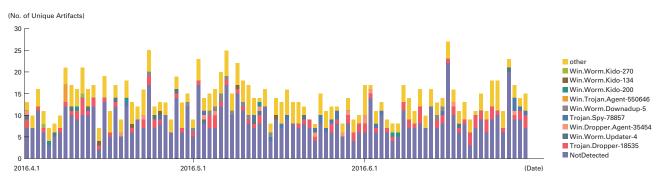


Figure 10: Trends in the Number of Unique Artifacts (Excluding Conficker)

^{*38} An abbreviation of Command & Control server. A server that provides commands to a botnet consisting of a large number of bots.

^{*39} Conficker Working Group Observations (http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/InfectionTracking). Because no numerical data beyond January 7 is available within the current survey period, we have visually observed the highest value in the graph from early July, and used it.

1.3.3 SQL Injection Attacks

Of the different types of Web server attacks, IIJ is conducting ongoing investigations on SQL injection attacks*40. SQL injection attacks have been noted a number of times in the past, and continue to remain a major topic in Internet security. SQL injection attacks are known to attempt one of three things: the theft of data, the overloading of database servers, or the rewriting of Web content.

Figure 11 shows the source distribution of SQL injection attacks against Web servers detected between April 1 and June 30, 2016. Figure 12 shows the trend in the number of attacks. These are a summary of attacks detected through signatures in the IIJ Managed IPS Service. The United States was the source for 32.3% of attacks observed, while China and Japan accounted for 19.6% and 17.5%, respectively, with other countries following. SQL injection attacks on Web servers have been declining from the levels seen in the previous report.

During this period, attacks from multiple sources in China directed at specific targets took place on April 5. On April 7, there were attacks from specific sources in China, Hong Kong, and South Korea directed at specific targets. These attacks are thought to have been attempts to scan for Web server vulnerabilities.

As previously shown, attacks of various types were properly detected and handled in the scope of the service. However, attack attempts continue, requiring ongoing caution.

1.3.4 Website Alterations

Here we indicate the status of website alterations investigated through the MITF Web crawler (client honeypot)*41.

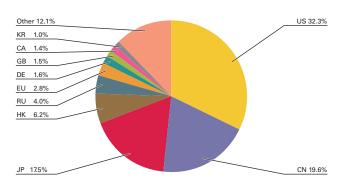


Figure 11: Distribution of SQL Injection Attacks by Source

This Web crawler accesses hundreds of thousands of websites on a daily basis, focusing on well-known and popular sites in Japan. The number of sites that it accesses are added accordingly. In addition to this, we temporarily monitor websites that have seen short-term increases in access numbers. By surveying websites thought to be viewed frequently by typical users in Japan, it becomes easier to speculate trends for fluctuations in the number of altered sites, as well as the vulnerabilities exploited and malware being distributed.

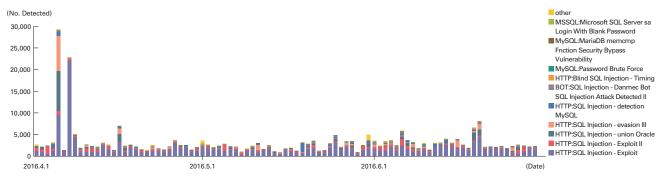
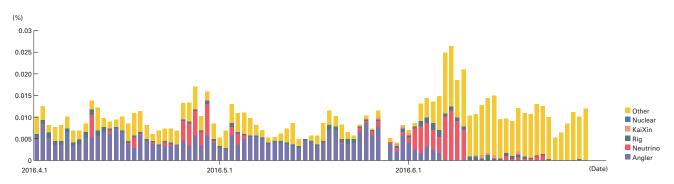


Figure 12: Trends in SQL Injection Attacks (by Day, by Attack Type)

^{*40} Attacks accessing a Web server to send SQL commands, and operating against an underlying database. Attackers access or alter the database content without proper authorization to steal sensitive information or rewrite Web content.

^{*41} Refer to "1.4.3 Website Defacement Surveys Using Web Crawlers" in Vol.22 of this report (http://www.iij.ad.jp/en/company/development/iir/pdf/iir_vol22_ EN.pdf) for a description of Web crawler observation methods.



For the period between April 1 and June 30, 2016, drive-by downloads using the Angler Exploit Kit accounted for the majority of passive attacks detected (Figure 13). A large number of Angler-based attacks had been observed on an ongoing basis since July 2015*42, but they were no longer detected at all after June 6, 2016. One reason for the disappearance of Angler is an incident*43 immediately prior to this in which a criminal organization thought to have utilized malware for exploits in Russia was busted, leading to the arrest of 50 people*44. For a period of time after this, Neutrino gained momentum as if to fill the hole left by Angler, but since late June its growth has stagnated along with Rig.

Many of the payloads observed in April were TeslaCrypt, but after the announcement that development of TeslaCrypt would be discontinued in May*45, it was replaced by CryptXXX. Other payloads such as Bedep and Ursnif were also observed.

Since mid-June, there was a sharp increase in the number of incidents where users were prompted to install a PUA*46 or redirected to fraudulent sites urging them to call a fictitious support center by displaying fake dialog boxes on the browser screen that suggested they had a malware infection, etc. It was also confirmed that many of these fraudulent sites displayed similar dialog boxes for Mac OS X clients as well, and prompted the installation of a PUA that could be executed in Mac OS X environments.

Due to the disappearance of Angler, attacks based on drive-by downloads have been returning to normal levels. Meanwhile, the number of fraudulent sites tricking users into PUA installations has been increasing. In browser environments, it is important to consider countermeasures for cases where PC users may intentionally install PUAs or malware due to social engineering techniques such as visiting fraudulent sites, in addition to the malware infections due to the exploitation of vulnerabilities*⁴⁷. Website operators need to continue to take measures against the alteration of Web content, and properly manage mashup content provided by external sources, such as advertisements or aggregation services.

*Covers several hundreds of thousands of sites in Japan. In recent years, drive-by downloads using exploit kits have been configured to change attack details and even whether or not to attack based on the client system environment or session information, source address attributes, and an attack quota such as the number of attacks. This means that results can vary wildly depending on the test

Figure 13: Rate of Passive Attack Incidence When Viewing Websites (%) (by Exploit Kit)

^{*42} Refer to "1.4.2 Angler Exploit Kit on the Rampage" in Vol.28 of this report (http://www.iij.ad.jp/en/company/development/iir/pdf/iir_vol28_EN.pdf) for more information about our observations of the status and functions of Angler in July 2015.

^{*43} Source - BBC News - © [2016] BBC, "Russian hacker gang arrested over \$25m theft" (http://www.bbc.com/news/technology-36434104).

^{*44} For example, an article titled "Is the Angler exploit kit dead?" (https://nakedsecurity.sophos.com/2016/06/16/is-angler-exploit-kit-dead/) on the Sophos Naked Security technology blog touches upon the connection between this incident and the disappearance of Angler.

^{*45} We discuss the end of TeslaCrypt development in Vol.31 of this report (http://www.iij.ad.jp/en/company/development/iir/031.html) under "1.4.1 Various Ransomware and Their Countermeasures."

^{*46} An abbreviation of Potentially Unwanted Application. This is a generic term for applications deemed unnecessary for general work tasks, and thought to potentially lead to unwanted results for PC users and system administrators.

^{*47} Examples include limiting the assignment of administrator privileges and applying application white lists. See Vol.31 of this report (http://www.iij.ad.jp/en/company/development/iir/031.html) under "1.4.2 Hardening Windows Clients Against Malware Infections" for more information.

1.4 Focused Research

Incidents occurring over the Internet change in type and scope from one minute to the next. Accordingly, IIJ works toward implementing countermeasures by continuing to conduct independent surveys and analyses of prevalent incidents. Here, we present information from the surveys we have conducted during this period, covering how to create profiles for the Volatility Framework, and hardening Windows clients against malware infections (part 2).

1.4.1 Creating Profiles for the Volatility Framework

■ About the Volatility Framework

The Volatility Framework (herein referred to as "Volatility") is open source software used to analyze memory images for computer forensics*48.

When you run Volatility you must specify a profile. Profiles are prepared for each OS, service pack, and architecture, and it is not possible to perform a proper analysis unless you specify the profile that matches the system that the memory image was obtained from. Figure 14 shows a list of profiles included in Volatility by default.

As this figure shows, only Windows profiles are bundled with the software by default. To analyze Linux or Mac OS X memory images, it is necessary to download profiles from the Volatility GitHub page*49. However, profiles are not available for all OS versions. Also, since many kernel updates are released for Linux, you may encounter cases where the Linux kernel version is different even for identical versions of an OS.

Profiles

VistaSP0x64 - A Profile for Windows Vista SP0 x64 VistaSP0x86 - A Profile for Windows Vista SP0 x86 VistaSP1x64 - A Profile for Windows Vista SP1 x64 VistaSP1x86 - A Profile for Windows Vista SP1 x86 VistaSP2x64 - A Profile for Windows Vista SP2 x64 VistaSP2x86 - A Profile for Windows Vista SP2 x86 Win10x64 - A Profile for Windows 10 x64 Win10x86 - A Profile for Windows 10 x86 Win2003SP0x86 - A Profile for Windows 2003 SP0 x86 Win2003SP1x64 - A Profile for Windows 2003 SP1 x64 Win2003SP1x86 - A Profile for Windows 2003 SP1 x86 Win2003SP2x64 - A Profile for Windows 2003 SP2 x64 Win2003SP2x86 - A Profile for Windows 2003 SP2 x86 Win2008R2SP0x64 - A Profile for Windows 2008 R2 SP0 x64 Win2008R2SP1x64 - A Profile for Windows 2008 R2 SP1 x64 Win2003SP1x64 - A Profile for Windows 2008 SP1 x64 Win2008SP1x86 - A Profile for Windows 2008 SP1 x86 Win2008SP2x64 - A Profile for Windows 2008 SP2 x64 Win2008SP2x86 - A Profile for Windows 2008 SP2 x86 Win2012R2x64 - A Profile for Windows Server 2012 R2 x64 Win2012x64 - A Profile for Windows Server 2012 x64 Win7SP0x64 - A Profile for Windows 7 SP0 x64 Win7SP0x86 - A Profile for Windows 7 SP0 x86 Win7SP1x64 - A Profile for Windows 7 SP1 x64 Win7SP1x86 - A Profile for Windows 7 SP1 x86 Win81U1x64 - A Profile for Windows 8.1 Update 1 x64 Win81U1x86 - A Profile for Windows 8.1 Update 1 x86 Win8SP0x64 - A Profile for Windows 8 x64 Win8SP0x86 - A Profile for Windows 8 x86 Win8SP1x64 - A Profile for Windows 8.1 x64 Win8SP1x86 - A Profile for Windows 8.1 x86 WinXPSP1x64 - A Profile for Windows XP SP1 x64 WinXPSP2x64 - A Profile for Windows XP SP2 x64 WinXPSP2x86 - A Profile for Windows XP SP2 x86

WinXPSP3x86 - A Profile for Windows XP SP3 x86

In such cases, it is necessary to create a profile on your own to match the system being used. In this report we will explain the procedures for creating Volatility profiles for Linux kernels.

■ Preparation for Creating a Profile

■ Checking the Version of the System to be Analyzed

To create a Volatility profile, you must install Volatility on a system with the same version as the system that will be subject to the memory image analysis. See Figure 15 for instructions on how to check the OS version and Linux kernel version for most Linux distributions. Here, we will use CentOS Linux 7.2-1511 and Linux kernel 3.10.0-327.22.2.el7.x86_64 as an example.

Figure 14: Default Profiles for Volatility

^{*48} The Volatility GitHub page. "GitHub - volatilityfoundation/volatility: An advanced memory forensics framework" (https://github.com/volatilityfoundation/volatility)

^{*49} The profile download page. "GitHub - volatilityfoundation/profiles: Volatility profiles for Linux and Mac OS X" (https://github.com/volatilityfoundation/profiles).

Preparing a Machine for Creating a Profile

Prepare a machine for creating Volatility profiles (prepare a separate machine to minimize changes to the system subject to analysis). At this time it is best to ready a machine with the same OS version and Linux kernel version using the step explained above. A virtual machine can also be used to create the profile.

Downloading Volatility

Install the libraries required to run Volatility and create profiles (Figure 16). Git is used for part of the process, but some Linux distributions may have packages for these libraries. If this is the case, install them instead as necessary.

Next, download Volatility (Figure 17). Volatility can be run without installing it on a system, so here we will use it without installing. Run "\$ python ./vol.py --info" in the directory you downloaded Volatility into, and make sure that no errors occur.

■ Installing a Linux Kernel Development Environment

Because it is necessary to compile a kernel module when creating profiles, you will need to install a Linux kernel development environment (Figure 18). Commands such as "make" and "gcc" are also required, so install each command as necessary. This completes the preparation.

■ Creating a Profile

Run the "make" command in the "volatility/tools/linux" directory. If there are no issues, a file called "module.dwarf" should have been created in this directory. Next, create a ZIP file containing the "module.dwarf" and "System.map" files in the "volatility/ volatility/plugins/overlays/linux/" directory (Figure 19).

RedHat

\$ cat /etc/redhat-release

CentOS

\$ cat /etc/centos-release

Debian

\$ cat /etc/lsb-release

Ubuntu

\$ cat /etc/debian version

Linux Kernel \$ uname -r

Figure 15: Checking the OS Version

Downloading Volatility

in the profile name as well.

\$ git clone https://github.com/volatilityfoundation/volatility.git

Running Volatility

\$ cd volatility

\$ python ./vol.py

Figure 17: Downloading and Running Volatility

This ZIP file is the Volatility profile. There are no required

naming conventions for profiles, but it is probably best to use a profile name that at least describes the OS version. If you wish

to micromanage your profiles, include the Linux kernel version

Installing PyCrypto

Installing diStorm3

\$ sudo yum install python-crypto

\$ sudo python setup.py install

\$ git clone https://github.com/gdabah/distorm.git

Installing DWARF

\$ sudo yum install libdwarf-tools

Installing elfutils

\$ sudo yum install elfutils-libs

Figure 16: Installing Related Libraries

\$ sudo yum install kernel-devel-3.10.0-327.22.2.el7.x86_64.rpm \$ sudo yum install kernel-headers-3.10.0-327.22.2.el7.x86_64.rpm

Figure 18: Installing a Linux Kernel Development Environment

\$ cd volatility/tools/linux

\$ sudo zip volatility/volatility/plugins/overlays/linux/CentOS72.zip ./module.dwarf /boot/System.map-3.10.0-327.22.2.el7.x86_64

Figure 19: Creating a Profile

You can check whether the created profile has been recognized in Volatility using commands such as those shown in Figure 20.

■ Creating Different Versions of a Profile

The procedures detailed up to this point have shown how to create Volatility profiles for the Linux kernel currently running. However, even if the OS version is the same, when creating profiles for different Linux kernel versions or a custom Linux kernel, it is necessary to change the process slightly.

■ When the Linux Kernel Version is Different

In place of the "Installing a Linux Kernel Development Environment" step, unpack the Linux kernel package you want to create a profile for into a directory of your choice as shown in Figure 21.

The other procedures remain basically the same, but when creating the profile, you must specify KDIR and KVER as parameters for the "make" command as shown in Figure 22.

One thing to note is that for CentOS 7, the "/lib/modules/<kernel_ver>/build" symbolic link will be broken, resulting in an error indicating that "/home/admin/ksrc/lib/modules/<kernel_ver>/build does not exist" when you run the "make" command. In this case, you can avoid the error by resetting the symbolic link for the build file, as shown in Figure 23.

■ When a Custom Linux Kernel is Used

When the Linux kernel is customized for a specific device or purpose, it is not possible to use the packages made available by the Linux distributors as-is. In this case, prepare the source code for the Linux kernel using one of the following methods.

- 1. If the source code and patches for the custom Linux kernel are available, use these.
- 2. If the source code and patches are not available, prepare source code for a version of the Linux kernel as close as possible to the one being used in the system subject to analysis. Also, using the kernel configuration on the system to be analyzed, keep the configuration as similar as possible*50.

As described above, while source code that corresponds as closely as possible to the Linux kernel running on the system to be analyzed is required, the other procedures remain the same.

Figure 20: Checking Profiles

```
$ wget http://ftp.iij.ad.jp/pub/linux/centos/7.2.1511/updates/x86_64/Packages/kernel-3.10.0-327.3.1.el7.x86_64.rpm
$ wget http://ftp.iij.ad.jp/pub/linux/centos/7.2.1511/updates/x86_64/Packages/kernel-devel-3.10.0-327.3.1.el7.x86_64.rpm
$ wget http://ftp.iij.ad.jp/pub/linux/centos/7.2.1511/updates/x86_64/Packages/kernel-headers-3.10.0-327.3.1.el7.x86_64.rpm
$ mkdir ksrc && cd ksrc
$ rpm2cpio ../kernel-devel-3.10.0-327.3.1.el7.x86_64.rpm | cpio -id
$ rpm2cpio ../kernel-headers-3.10.0-327.3.1.el7.x86_64.rpm | cpio -id
$ rpm2cpio ../kernel-3.10.0-327.3.1.el7.x86_64.rpm | cpio -id
```

Figure 21: Unpacking Different Linux Kernel Versions

\$ make KDIR=/home/admin/ksrc/ KVER=3.10.0-327.3.1.el7.x86_64	\$ cd /home/admin/ksrc/lib/modules/3.10.0-327.3.1.el7.x86_64/ \$ rm build \$ ln -s /home/admin/ksrc/usr/src/kernels/3.10.0-327.3.1.el7.x86_64/ build

Figure 22: Creating Profiles for Different Linux Kernel Versions

Figure 23: Resetting a Symbolic Link

^{*50} However, if part of the internal data structure of the kernel differs between the created profile and the system to analyze, it may not be possible to analyze that part properly, so this must be taken into account when performing analysis.

Also, although Mac OS X profiles can be downloaded from the Volatility GitHub page as mentioned previously, you may not be able to download a profile for the latest version depending on the timing, such as immediately after a new version is released. The procedure for creating a profile is mostly the same as for Linux kernels*51, so it may be beneficial to consider creating a Mac OS X profile for yourself.

1.4.2 Hardening Windows Clients Against Malware Infections (Part 2)

In the previous IIR, we discussed fundamental measures, such as applying patches and only granting general user privileges, as well as a hardening method called application whitelisting. In this report we will introduce the other measures. Those who have not yet read the previous report should also see "Hardening Windows Clients Against Malware Infections (Part 1)" in IIR Vol.31*52.

■ FMFT

EMET (Enhanced Mitigation Experience Toolkit) is a tool distributed by Microsoft for mitigating the exploitation of vulnerabilities*53. In addition to making maximum use of Windows security features, it also implements measures for mitigating known attack techniques. You can also install EMET and enforce policies on all clients in a domain*54. Version 5.5 is the most recent version at the time of writing, so we will explain how to use this version of EMET on a single host. Launching EMET GUI from the Start menu after installation will launch the EMET management tool.

- 1. Change **Quick Profile Name** to **Maximum security settings**. A pop-up window indicating you will need to reboot appears after making this change, so click **OK** (Figure 24).
- 2. Click Import, and then apply all the profiles in C:\Program Files (x86) \EMET 5.5\Deployment\Protection Profiles.
- 3. Reboot the host to enable the settings.

This concludes the basic configuration. After this, you can finetune settings by clicking **Apps** in the configuration window to add individual applications based on your environment, or remove any interfering functions individually when issues occur during testing or when using an application.

■ Using a Stricter UAC Policy

UAC (User Account Control) is a feature implemented beginning with Windows Vista that disables privileged operations under normal circumstances, even for administrator accounts. This feature helps in detecting malicious changes by checking with the user whether the change was initiated by them prior to any program making important changes to the OS.

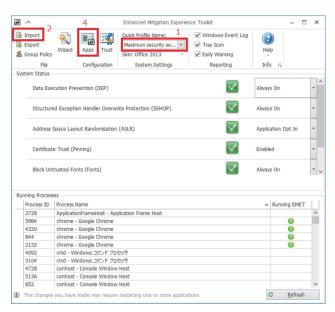


Figure 24: EMET Configuration Screen

^{*51} Detailed procedures for creating Mac OS X profiles (https://github.com/volatilityfoundation/volatility/wiki/Mac).

^{*52 &}quot;Internet Infrastructure Review (IIR) Vol.31" (http://www.iij.ad.jp/en/company/development/iir/pdf/iir_vol31_EN.pdf).

^{*53} You can view information regarding EMET and download the toolkit from the following URL. "Enhanced Mitigation Experience Toolkit" (https://technet.microsoft.com/en-us/security/jj653751).

^{*54} Since version 3.0, EMET has supported the automatic installation of packages via Active Directory, as well as policy distribution. The following URLs provide detailed explanations using images and video. "Controlling EMET when using Active Directory" (http://n.pentest.ninja/?p=31157) (in Japanese). "ITSCFORUM Deploy and Manage EMET using a GPO" (https://www.youtube.com/watch?v=4MgODgeDr18&app=desktop).

Broadly speaking, there are four levels of UAC configuration, and in Vista, the highest level, "Always notify," was set by default. However, most users who had been using XP on its own were utilizing administrator privileges all the time, so switching to Vista resulted in frequent UAC pop-ups, causing many users to criticize this function. For this reason, from Windows 7 onward, the default was changed to the second highest level, "Notify me only when apps try to make changes to my computer." But this configuration has a number of flaws, and actual cases have been confirmed where UAC was bypassed to perform attacks that automatically elevate to administrative privileges without user consent*55. To avoid vulnerabilities like this, it is best to change the UAC configuration to the "Always notify" setting*56.

- 1. From the Control Panel, click User Accounts to view user accounts.
- 2. Click Change User Account Control settings, and the window shown in Figure 25 will appear.
- 3. On Windows 7 or later the second highest level will be set, so move the slider to the top, and then click OK (Figure 26).

This will prevent the automatic elevation of privileges, pop-ups will always appear, and make it easier for administrative users to notice any irregularities.

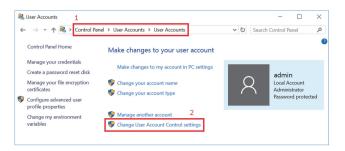


Figure 25: User Accounts Configuration Screen

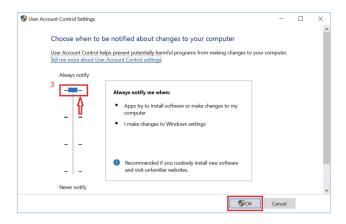


Figure 26: Change User Account Control Settings

"UACMe" (https://github.com/hfiref0x/UACME).

■ Disabling WSH

WSH (Windows Script Host) is a function for running VBScript or JScript on a host. As mentioned in the previous report, IIR Vol.31, under "1.4.1 Various Ransomware and Their Countermeasures," cases where JScript (.js) files are attached to emails have been confirmed with TeslaCrypt and Locky. In the past, a technique where shortcut files (.Ink) with VBScript (.vbs) embedded were sent via email was seen. To prevent these kinds of attacks, disable WSH by adding the following value into the registry key using the Registry Editor.

- Key
 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
 Windows Script Host\Settings
- Value name Enabled
- Value data (DWORD value)

When disabled, a warning will appear when double-clicking .js or .vbs files, or when executing cscript.exe (Figure 27).

^{*55} In IIR Vol.21 under "1.4.1 The PlugX RAT Used in Targeted Attacks" (http://www.iij.ad.jp/en/company/development/iir/021.html), we touch upon automatic elevation to administrator privileges by bypassing UAC with PlugX. In the past, malware such as Dridex also bypassed UAC using a different sdb than PlugX. The following URL explains these techniques, "New UAC circumvention techniques using Dridex (2015-02-09)" (https://www.jpcert.or.jp/magazine/acreport-uac-bypass.html) (in Japanese). A researcher created a list of UAC bypass techniques that can be utilized when using the default values in Windows 7 or later, and has published the list as a verification tool.

^{*56} In domain environments, this is done through the Group Policy Management Editor. Navigating to Computer Configuration, Policies, Windows Settings, Security Settings, Local Policies, Security Options to adjust the User Account Control items will yield a similar result.

■ Blocking rundll32.exe and regsvr32.exe Communications

rundll32.exe and regsvr32.exe contain functions that can be used to obtain and execute VBScript (.vbs) and JScript (.js) files from a remote host via HTTP, etc. These functions could be exploited by attackers, so they should be blocked. However, because rundll32.exe and regsvr32.exe are also used by normal Windows processes, it is not possible to block execution of them entirely. Therefore, what needs to be blocked is when these executable files attempt to communicate externally. This can be done through the configuration of outbound rules for Windows Firewall with Advanced Security, or a personal firewall. In 64-bit environments, the executable files also exist on the SysWOW64 side, so these need to be blocked as well.

C:\Windows\System32\rundll32.exe
C:\Windows\System32\regsvr32.exe
C:\Windows\SysWOW64\rundll32.exe
C:\Windows\SysWOW64\regsvr32.exe

These executable files could also be present in folders under C:\Windows\WinSxS, so these must be blocked as well.

■ Blocking PowerShell

PowerShell is an extremely powerful scripting language for Windows that can manage Windows and access Windows APIs. By default it cannot run file-based scripts, but this limitation can be bypassed easily. Shortcuts or external scripts via HTTP can be directly executed, and its use has been confirmed in actual attacks, so it is best to place a blanket restriction on the paths shown below, using AppLocker or Software Restriction Policies to prevent execution by general users.

C:\Windows\System32\WindowsPowerShell
C:\Windows\SysWOW64\WindowsPowerShell

Because folders under C:\Windows\WinSxS may also contain powershell_ise.exe, these must be blocked as well.

■ Blocking HTAs

HTAs (.hta) are HTML application programs written using HTML, VBScript, and JScript. In a recent example, an attacker using Locky attempted to infect users by sending emails with .hta files attached, and prompting users to open them. Other than this, incidents where malware used malicious HTAs have been taking place since at least 2007*57. To deal with these, it is best to restrict mshta.exe using AppLocker or Software Restriction Policies. Because this may also be present in folders under C:\Windows\ WinSxS, these must be blocked as well. A limited solution is to remove .hta file associations using the Group Policy Editor, but this can be bypassed when mshta.exe is called via a shortcut, so it is not a perfect solution.

Figure 27 Confirming WSH is Disabled

^{*57} Malicious HTA incidents are discussed at the following URL. "The Power of (Misplaced) Trust: HTAs and Security" (https://nakedsecurity.sophos.com/2009/10/16/power-misplaced-trust-htas-insecurity/).

■ Preventing Web Browser Plug-ins from Running Automatically (Click to Play)

You can configure a setting in Google Chrome and Firefox called Click to Play that only allows Web browser plug-ins to run when a user has given explicit permission*58. This prevents Flash and other plug-ins from running automatically, and mitigates attacks (drive-by downloads) that infect users with malware through exploitation of vulnerabilities in plug-ins.

■ Google Chrome

- 1. On the Google Chrome menu, click Settings (Figure 28).
- 2. Click Show advanced settings at the bottom of the page.
- 3. Under Privacy, click Content settings.
- 4. Click Let me choose when to run plugin content.
- 5. Click Done, and Click to Play will be enabled (Figure 29).

Firefox

- 1. Type about:config in the address bar. A warning will appear after you do this, so click I'll be careful, I promise! (Figure 30).
- 2. Change the value for plugins.click_to_play to true to enable Click to Play (Figure 31).

■ Restricting Mashup Content

Firefox add-ons include plug-ins such as NoScript Security Suite*59 and RequestPolicy Continued*60 that limit the sites that can execute script or prevent access to domains other than those entered into the address bar. Using these add-ons can prevent redirection to an external site even when the website you normally browse is compromised, making it less likely you will be sent to a malicious website. This can help mitigate malware infections as a result.

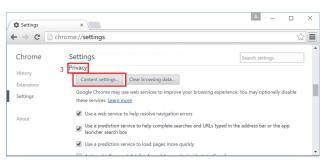


Figure 28: Chrome Settings

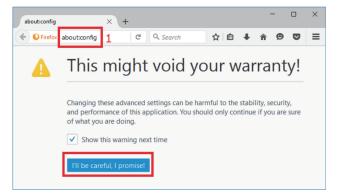


Figure 30: Firefox Advanced Settings Screen

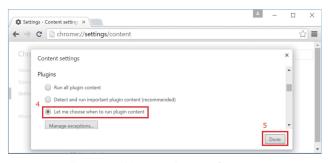


Figure 29: Chrome - Content Settings

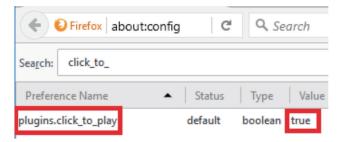


Figure 31: Firefox - Click to Play Settings

^{*58} Internet Explorer also has a feature called ActiveX filters that function like Click to Play. "Use ActiveX controls for Internet Explorer 11 and Internet Explorer 10" (https://support.microsoft.com/en-us/help/17469/windows-internet-explorer-use-activex-controls).

^{*59 &}quot;NoScript Security Suite" (https://addons.mozilla.org/en/firefox/addon/noscript/).

 $[\]begin{tabular}{ll} *60 & "RequestPolicy Continued" (https://addons.mozilla.org/en/firefox/addon/requestpolicy-continued/). \\ \end{tabular}$

■ Blocking Store Apps

Store apps can be used in Windows 8 and later, but because users are able to install apps freely, they may inadvertently install apps from the store that contain malware. Apps such as games are also included by default, which are not appropriate in a business environment. Thus, you should block the use of all store apps.

- 1. Run the Local Group Policy Editor as an administrator. This can be done by executing gpedit.msc.
- 2. From the console tree in the left pane, navigate to Computer Configuration, Administrative Templates, Windows Components, Store (Figure 32).
- 3. Switch the following items to Enabled (Figure 32).
 - Turn off the Store application
 - Disable all apps from Windows Store (this item is only found in Windows 10 or later)
- 4. To enable Software Restriction Policies, reboot the host you want to enforce policies for, or start a command prompt as an administrator and execute the "gpupdate /force" command.

If you access the store after disabling it, you will see that apps can no longer be accessed (Figure 33). You can also restrict apps through AppLocker.

■ Various Measures and Their Effect Against Intrusion Routes

Table 1 below is a summary of the effectiveness of individual measures for each route of intrusion.

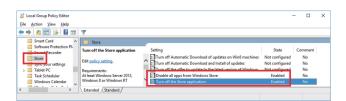


Figure 32: Store App Configuration Screen

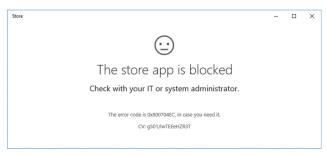


Figure 33: Screen Displayed When Store Apps are Blocked

Table 1: Various Measures and Their Effect on Intrusion Routes

Measure	Web	Email	Notes
Application whitelisting	0	0	Because malware is downloaded and installed under the user directory in many cases, it is possible to prevent infection. It is also possible to protect against executables with fake icons or .js and .vbs files received by email, even if they are accidentally double-clicked.
Do not grant administrator privileges to users	Δ	Δ	Can limit the scope of the malware activity to a single account. Prevents unintended program from being included.
EMET	Δ	Δ	Can mitigate exploits using malicious Web content or malicious document files.
Using stricter UAC policies	Δ	Δ	You can minimize the scope of damages, even when executed as an administrator user.
Disabling WSH		0	Can prevent infection when .js or .vbs files are received by email, or when JScript or VBScript are included in shortcuts.
Block rundll32.exe and regsvr32.exe communications	0	0	When used during a drive-by download, it mitigates infection. Can prevent when malicious shortcuts are sent via email.
Blocking PowerShell	0	0	When used during a drive-by download, it mitigates infection. Can prevent when malicious shortcuts are sent via email.
Blocking HTA	0	0	When .hta files are received by email or used during a drive-by download, it mitigates infection
Prevents Web browser plug-ins from running automatically (Click to Play)	0		Mitigates the occurrence of drive-by downloads.
Restricting mashup content	0		Mitigates the occurrence of drive-by downloads.
Blocking store apps			Protects against unintended programs being included, as well as the installation of malware or PUA (potentially unwanted applications) from the store.

^{*}We assume drive-by downloads for Web, and attachments for Email. URL is included in drive-by-downloads.

 \bigcirc : Effective \triangle : Effective under some conditions

■ The Potential of an Attack Succeeding

Implementing the abovementioned measures can prevent many malware infections, but under the following circumstances they will not help protect against an attack.

- When an attack successfully exploits an arbitrary code execution vulnerability
- When malware is executed with increased privileges, such as SYSTEM privileges exploiting a privilege escalation vulnerability, or when malware is unpacked and executed entirely in memory

However, bypassing EMET and successfully executing an unknown vulnerability (0-day) is extremely difficult, and we believe that most attacks will not be successful*61.

■ Side Effects

When AppLocker or Software Restriction Policies are used, a standard version of Google Chrome will no longer function. This is because Chrome is installed to the general user directory. As an alternative, you can use the standalone installer to install it under Program Files. However, even if you do this, the Google Chrome updater will still attempt to unpack and run executable files in the user's temp directory, so updates cannot be applied. To avoid this, you should allow the certificate of this updater as a permission rule*62.

When WSH is disabled, logon scripts that use VBScript will no longer function. When PowerShell is being used for PC management, blocking PowerShell execution will have an adverse effect.

^{*61} During the period covered by this report, there was a report of the Angler Exploit Kit completely evading the latest version of EMET, enabling attacks to succeed. "Angler Exploit Kit Evading EMET" (http://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html). In the past a number of vulnerabilities had been reported by researchers, but to my knowledge this was the first time an actual attack had been confirmed. That said, when this attack appeared, the Angler Exploit Kit did not exploit any 0-day vulnerabilities, so as long as patches were being applied properly there would be no damages. EMET may implement countermeasures for this technique in the next update, but at the time of writing it was considered difficult to prevent it through EMET. To mitigate the reported technique, you can disable Flash and Silverlight, or use the Click to Play function to prevent the automatic loading of DLLs related to programs like Flash. This demonstrates that it is necessary to apply what is known as defense in depth, implementing other techniques to protect against attacks for when a single countermeasure is compromised. It is also necessary to gather information on attacks and examine ways to mitigate them on an ongoing basis. EMET is merely a tool for mitigating vulnerabilities. You should not misunderstand what EMET is and think that implementing EMET means that you no longer need to apply patches.

^{*62} Chrome distributes Chrome for Work, which supports batch installation on Windows domain clients, centralized management using group policies, and policy enforcement for users (https://www.google.com/intl/en/chrome/business/browser/admin/). This mechanism allows administrators to deploy the newest versions to all clients. In addition, it can prevent users from installing extensions or add-ons on their own. Firefox and Thunderbird also use mechanisms called Mission Control Desktop (MCD) and AutoConfig to prevent users from changing the environment on their own, and force the use of administrator settings (https://developer.mozilla.org/en-US/Firefox/Enterprise_deployment).

Japan still has a deep-rooted culture regarding the use of self-extracting archives to send encrypted files as attachments when exchanging messages by email. When application whitelisting is enabled, all areas where a user can save executable files are blocked without exception, so recipients of such files will no longer be able to check the content of these attachments. The EMDIVI malware that was used frequently in targeted attacks two years ago used self-extracting archives. If the attacker obtained archivers and encryption tools identical to those used within the sender organization, and created the self-extracting archives and sent them by email, there would be no way to determine whether the attachment is harmless or not. When you want to encrypt attachments, you should use a password-protected ZIP file, or if stronger encryption is required, encrypt with GPG before sending. Another option is to use a trusted online storage service and share files over an HTTPS-encrypted communication channel, or encrypt the entire email using PGP/MIME or S/MIME. Either way, we need to eradicate this bad cultural habit as quickly as possible.

You may run into a number of other issues when implementing the configurations we have introduced here. When this happens, you will need to consider whether the issue can be avoided by devising new rules or changing a process. Our discussion here has been focused on preventing malware infections, but to conduct operations more securely you should also consider other measures, such as configuring audit policies for process creation, file creation, and write events, or even using third-party auditing software for monitoring. Windows 10 features freshly-implemented functions for maintaining security in the face of new threats, such as Device Guard*63 and Credential Guard*64. It may be beneficial to look into these. Because new threats are discovered every day, you will need to gather information, evaluate ways to deal with these threats, and review your policies on a regular basis.

1.5 Conclusion

This report has provided a summary of security incidents that IIJ has responded to. This time we discussed the creation of profiles for the Volatility Framework, and hardening Windows clients against malware infections (part 2). IIJ makes every effort to inform the public about the dangers of Internet usage by identifying and disclosing information on incidents and associated responses through reports such as this.

Authors:

Director of the Advanced Security Division, and Manager of the Office of Emergency Response and Clearinghouse for Security Information, IIJ. After working in security services development for enterprise customers, in 2001 Mr. Saito became the representative of the IIJ Group emergency response team IIJ-SECT, which is a member team of FIRST, an international group of CSIRTs. Mr. Saito serves as a steering committee member for several industry groups, including ICT-ISAC Japan, Nippon CSIRT Association, Information Security Operation providers Group Japan, and others.

Masafumi Negishi (1.2 Incident Summary)

Tadashi Kobayashi, Tadaaki Nagao, Hiroshi Suzuki, Minoru Kobayashi, Hisao Nashiwa (1.3 Incident Survey)

Minoru Kobayashi (1.4.1 Profile Creation for the Volatility Framework)

Hiroshi Suzuki (1.4.2 Hardening Windows Clients Against Malware Infections (Part 2))

Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ

Contributors

Yuji Suga, Yasunari Momoi, Hiroyuki Hiramatsu, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ

^{*63 &}quot;Device Guard overview" (https://technet.microsoft.com/library/dn986865(v=vs.85).aspx).

^{*64 &}quot;Protect derived domain credentials with Credential Guard" (https://technet.microsoft.com/library/dn986865(v=vs.85).aspx).

2. Broadband Traffic Report

Traffic Growth is Accelerating

2.1 Overview

In this report we analyze traffic over the broadband access services operated by IIJ each year and present the results*1*2*3*4*5*6*7. Here we will once again report on changes in traffic trends over the past year based on daily user traffic and usage by port.

Figure 1 shows average monthly traffic trends for IIJ's overall broadband services and mobile services. The IN/OUT traffic indicates directions from an ISP's perspective. IN represents uploads from users, and OUT represents user downloads. Because we cannot disclose traffic numbers, we have normalized the latest values for each set of OUT data to 1. For broadband, over the past year IN traffic has increased by 18%, while OUT traffic has increased by 47%. A year ago each had increased by 15% and 38%, respectively, indicating that significant growth has occurred.

For mobile, we only present figures for the past two years, but over the last year traffic continued to grow, albeit at a slightly slower pace. IN traffic increased by a factor of 2.3, and OUT traffic by a factor of 2.4, while a year earlier they increased by factors of 3.5 and 4.2, respectively. Despite this growth, the total volume of mobile traffic is still an order of magnitude lower than broadband.

2.2 About the Data

For broadband traffic, as with our previous reports, the survey data utilized here was collected using Sampled NetFlow from the routers accommodating fiber-optic and DSL broadband customers of our personal and enterprise broadband access services. For mobile traffic, access gateway billing information was applied to determine usage amounts for personal and enterprise mobile services, while Sampled NetFlow data from the routers accommodating these services was employed to determine the ports used. Because traffic trends differ between weekdays and weekends, we analyze a full week of traffic. In this case, we used data for the week spanning May 30 to June 5, 2016. For comparison, we used the data for the week spanning June 1 to June 7, 2015, which we analyzed in the previous report.

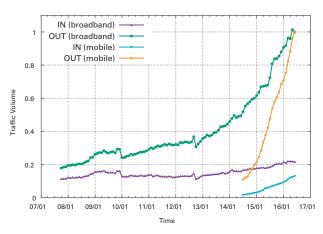


Figure 1: Trends in Monthly Traffic for Broadband and Mobile

Results are aggregated by subscription for broadband traffic, and by phone number for mobile traffic, as some subscriptions cover multiple phone numbers. The usage volume for each broadband user was obtained by matching the IP address assigned to users with the IP addresses observed. We gathered statistical information by sampling packets using NetFlow. The sampling rate was set between 1/8192 and 1/16382, taking into account router performance and load. We estimated overall usage volumes by multiplying observed volumes by the reciprocal of the sampling rate. IIJ provides both fiber-optic and DSL access for its broadband services, but fiber-optic access now accounts for the vast majority of use. 97% of users observed in 2016 used fiber-optic connections, making up 98% of the overall broadband traffic volume.

^{*1} Kenjiro Cho. Broadband Traffic Report: Comparing Broadband and Mobile Traffic. Internet Infrastructure Review. Vol.28. pp28-33. August 2015.

^{*2} Kenjiro Cho. Broadband Traffic Report: Traffic Volumes Rise Steadily Over the Past Year, and HTTPS Use Expands. Internet Infrastructure Review. Vol.24. pp28-33. August 2014.

^{*3} Kenjiro Cho. Broadband Traffic Report: The Impact of Criminalization of Illegal Downloads was Limited. Internet Infrastructure Review. Vol.20. pp32-37.

^{*4} Kenjiro Cho. Broadband Traffic Report: Traffic Trends over the Past Year. Internet Infrastructure Review. Vol.16. pp33-37. August 2012.

^{*5} Kenjiro Cho. Broadband Traffic Report: Examining the Impact of the Earthquake on Traffic on a Macro Level. Internet Infrastructure Review. Vol.12. pp25-30. August 2011.

^{*6} Kenjiro Cho. Broadband Traffic Report: Traffic Shifting away from P2P File Sharing to Web Services. Internet Infrastructure Review. Vol.8. pp25-30. August 2010.

⁷ Kenjiro Cho. Broadband Traffic: Increasing Traffic for General Users. Internet Infrastructure Review. Vol. 4. pp18-23. August 2009.

2.3 Daily Usage Levels for Users

First, we will examine the daily usage volumes for broadband and mobile users from several perspectives. Daily usage indicates the average daily usage calculated from a week's worth of data for each user. Figure 2 and Figure 3 show the average daily usage distribution (probability density function) per broadband and mobile user. They compare data for 2015 and 2016 divided into IN (upload) and OUT (download), with user traffic volume on the X axis, and user frequency on the Y axis. The X axis shows volumes between 10 KB (10⁴) and 100 GB (10¹¹) using a logarithmic scale. Some users are outside the scope of the graph, but most fall within the 100 GB (10¹¹) range.

The IN and OUT distribution for broadband shows almost log-normal distribution, which looks like a normal distribution in a semilog graph. A linear graph would show a long-tailed distribution, with the peak close to the left end and a slow decay towards the right. The OUT distribution is further to the right than the IN distribution, indicating that the download volume is more than an order of magnitude larger than the upload volume. Comparing 2015 and 2016, the peak distribution for both IN and OUT traffic has moved slightly to the right, demonstrating that overall user traffic volumes are increasing. Looking at OUT distribution on the right side, the peak has been steadily moving to the right over the past few years. However, the usage levels of heavy users on the right end have not increased much, and the distribution is beginning to lose its symmetry. Meanwhile, the IN distribution on the left side demonstrates left-right symmetry, and is closer to log-normal distribution.

The data for mobile traffic in Figure 3 indicates that usage volumes are significantly lower than broadband. Additionally, because there are limits on data usage, the ratio of heavy users to the right of the distribution is lower, creating left-right asymmetry. There are also no extremely heavy users. Due to those who use mobile only when going out, as well as limits on data usage, there is greater variance in daily usage volumes for each user compared to broadband. For this reason, when you look at the daily average for a week worth of data, there is less variance between users than when examining individual days. Plotting distribution for individual days in the same way results in lower peaks, and raises the tails on either side, but the basic form and modal values of the distribution remain largely unchanged.

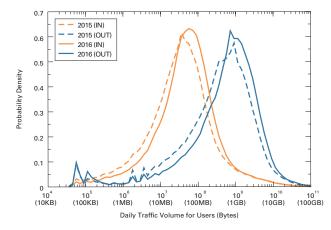


Figure 2: Daily Broadband User Traffic Volume Distribution Comparison of 2015 and 2016

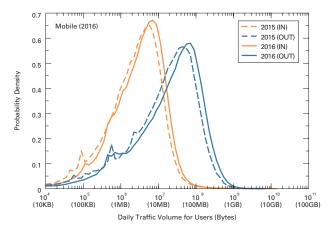


Figure 3: Daily Mobile User Traffic Volume Distribution Comparison of 2015 and 2016

Table 1 shows trends in the mean and median daily traffic values for broadband users as well as the modal value (the most frequent value that represents peak distribution). The peak position has shifted slightly from the center of the distribution, so the modal value was corrected towards the center of the distribution. Comparing the modal values in 2015 and 2016, IN rose from 40 MB to 56 MB, and OUT rose from 708 MB to 1,000 MB. This means that both IN and OUT traffic grew by a factor of 1.4. Meanwhile, because mean values are pulled up by the heavy users to the right of the graph, they are significantly higher than the modal values, with the mean IN value 475 MB and the mean OUT value 2,081 MB in 2016. In 2015, these were 467 MB and 1,621 MB, respectively.

For mobile, as shown in Table 2, the mean and modal values are virtually identical due to the lack of heavy users. In 2016 the modal values were 7 MB for IN and 63 MB for OUT, while the mean values amounted to 7.8 MB for IN and 63 MB for OUT. The modal values grew by a factor of 1.3 for IN traffic, and 1.6 for OUT traffic. Figure 4 and Figure 5 plot the IN/OUT usage volumes for 5,000 randomly sampled users. The X axis shows OUT (download volume) and the Y axis shows IN (upload volume), with both using a logarithmic scale. Users with identical IN/OUT values are plotted on the diagonal line. The cluster below the diagonal line and spread out parallel to it represents general users with download volumes an order of magnitude higher than upload volumes. For broadband traffic, there was previously a clearly-recognizable cluster of heavy users spread out thinly on the upper right of the diagonal line, but this is now no longer discernible. There are also differences in the usage levels and IN/OUT ratio for each user, pointing to the existence of diverse forms of usage. Here, almost no difference can be discerned compared to 2015.

	IN (MB/day)			0	UT (MB/da	у)
Year	Mean	Median	Mode	Mean	Median	Mode
2005	430	3	3.5	447	30	32
2007	433	5	4	712	58	66
2008	483	6	5	797	73	94
2009	556	7	6	971	88	114
2010	469	8	7	910	108	145
2011	432	9	8.5	1,001	142	223
2012	410	12	14	1,026	173	282
2013	397	14	18	1,038	203	355
2014	437	22	28	1,287	301	447
2015	467	33	40	1,621	430	708
2016	475	48	56	2,081	697	1,000

Table 1: Trends in Mean and Modal Values for the Daily
Traffic Volume of Broadband Users

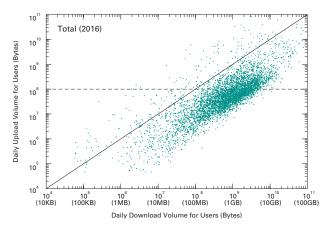


Figure 4: IN/OUT Usage for Each Broadband User

The trend for OUT traffic to be an order of magnitude larger also applies to mobile, but usage volumes are lower than broadband, and there is less variance between IN/OUT. The inclination of the cluster is also now lower than the diagonal line, indicating that download ratios are relatively higher for

		IN (MB/day)		0	UT (MB/da	y)
Year	Mean	Median	Mode	Mean	Median	Mode
2015	6.0	2.7	5.5	46.6	19	40
2016	7.8	3.6	7	63.0	27	63

Table 2: Trends in Mean and Modal Values for the Daily
Traffic Volume of Mobile Users

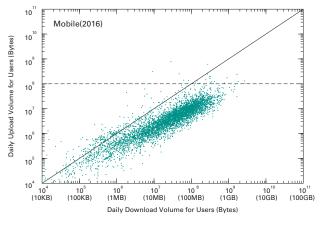


Figure 5: IN/OUT Usage for Each Mobile User

users with higher usage levels. Figure 6 and Figure 7 show the complementary cumulative distribution of the daily traffic volume for users. This indicates the percentage of users with daily usage levels greater than the X axis value on the Y axis in a log-log scale, which is an effective way of examining the distribution of heavy users. The right side of the graph falls linearly, showing a long-tailed distribution close to power-law distribution. It can be said that heavy users are distributed statistically, and are by no means a special class of user.

Heavy users also exhibit power-law distribution for mobile, but the ratio of heavy users is lower. Last year the OUT usage level was also several times higher than the IN levels in the distribution on the right end, but this year IN and OUT are reversed at the tail of the distribution, and there are users that upload large volumes of data. There is a great deal of deviation in traffic usage levels between users, and as a result traffic volume for a small portion of users accounts for the majority of overall traffic. For example, the top 10% of broadband users make up 60% of the total OUT traffic, and 87% of the total IN traffic. Furthermore, the top 1% of users make up 26% of the total OUT traffic, and 60% of the total IN traffic. Along with the decrease in the ratio of heavy users over the past few years, the distribution bias is also dropping slightly. For mobile, the top 10% of users account for 48% of OUT traffic and 50% of IN traffic, while the top 1% make up 12% of OUT traffic and 21% of IN traffic. This also demonstrates the low ratio of heavy users among mobile users.

2.4 Usage by Port

Next, we will look at a breakdown of traffic and examine usage levels by port. Recently, it has been difficult to identify applications by port number. Many P2P applications use dynamic ports on both ends, and a large number of client/server applications utilize port 80 assigned to HTTP to avoid firewalls. To broadly categorize, when both parties use a dynamic port higher than port 1024, there is a high possibility of it being a P2P application, and when one party uses a well-known port lower than port 1024, it is likely to be a client/server application. In light of this, here we will look at usage levels for TCP and UDP connections by taking the lower port number of the source and destination ports. As overall traffic is dominated by heavy user traffic, to examine trends for general users, we have taken the rough approach of extracting data for users with a daily upload volume of less than 100 MB, and treating them as light users. This constitutes users below the horizontal line IN=100 MB point in Figure 4, which roughly corresponds to mobile user usage levels.

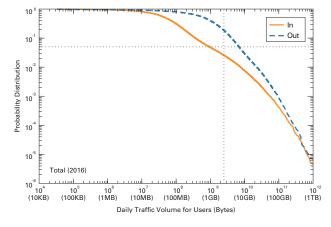


Figure 6: Complementary Cumulative Distribution of the Daily Traffic Volume for Broadband Users

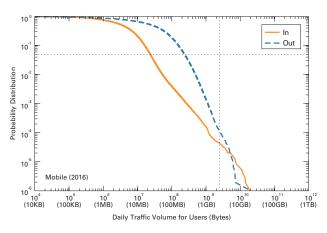


Figure 7: Complementary Cumulative Distribution of the Daily Traffic Volume for Mobile Users

Table 3 compares port usage ratios for broadband users in 2015 and 2016, showing total users and light users. 83% of overall traffic in 2016 is TCP based. The ratio of port 80 (HTTP) traffic was down from 38% in 2015 to 37% this year. The ratio of port 443 (HTTPS) traffic climbed from 23% to 31%. TCP dynamic port traffic, which has been on the decline, dropped from 18% in 2015 to 14% in 2016. The ratio of individual dynamic port numbers is tiny, with port 1935 used by Flash Player the highest at 2% of the total, and the next highest under 0.5%. Aside from TCP, there is port 443 (HTTPS) UDP traffic, which is thought to be Google's QUIC protocol. The rest is mostly VPN-related.

Looking exclusively at light users, port 80 traffic that accounted for 53% of the total in 2015 dropped 4 percentage points to 49% in 2016. Meanwhile, the next highest traffic ratio for port 443 (HTTPS) traffic climbed 5 percentage points, going from 35% in 2015 to 40% in 2016. We believe this was due to the shift of some HTTP traffic to HTTPS. The ratio of dynamic ports also decreased from 5% to 3%.

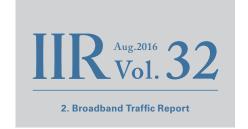

Table 4 shows port usage ratios for mobile users, which as a whole were close to the values for light users on broadband. The growth in the use of HTTPS is due to more and more services mainly based in the United States making regular use of encrypted HTTPS communications since the existence of a U.S. National Security Agency (NSA) program for intercepting communications stirred up controversy in June 2013. Looking at HTTPS traffic volumes broken down by provider for 2016, about 70% was related to Google, demonstrating their efforts to proactively adopt HTTPS. We also believe YouTube traffic volumes are boosting HTTPS usage.

Figure 8 compares trends in TCP port usage over a week for overall broadband traffic in 2015 and 2016. Trends in TCP port usage are shown for four categories: port 80, port 443, other well-known ports, and dynamic ports. Traffic is normalized to 1 for the total peak traffic volume. Compared with 2015, we can see that the overall ratio of port 443 usage has increased further, and the use of dynamic ports is decreasing. The overall peak is between 21:00 and 1:00 the next day, and traffic also increases in the daytime on Saturday and Sunday, reflecting times when the Internet is used at home. This time there was an increase in port 80 traffic on Wednesday morning, which we believe can be attributed to a Microsoft automatic update program. Figure 9 mobile data shows trends for port 80 and port 443, which account for the majority of traffic. Compared to broadband, high traffic levels continue from

	20)15	2016		
protocol port	total (%)	light users	total (%)	light users	
TCP	80.8	94.7	82.8	93.3	
(< 1024)	63.3	89.9	69.1	90.1	
80 (http)	37.9	53.2	37.1	49.2	
443 (https)	23.3	35.1	30.5	39.6	
81	0.5	0.7	0.4	0.7	
182	0.4	0.3	0.3	0.2	
22 (ssh)	0.2	0.0	0.2	0.0	
110 (pop3)	0.1	0.1	0.1	0.1	
(>= 1024)	17.5	4.8	13.7	3.2	
1935 (rtmp)	1.8	2.4	1.5	1.7	
8080	0.3	0.1	0.2	0.1	
7144 (peercast)	0.2	0.0	0.1	0.0	
UDP	11.4	2.6	11.1	4.0	
443 (https)	0.9	0.9	2.4	2.8	
4500 (nat-t)	0.2	0.1	0.2	0.1	
1701 (12tp)	0.2	0.3	0.1	0.1	
ESP	7.4	2.6	5.8	2.6	
IP-ENCAP	0.2	0.0	0.2	0.0	
GRE	0.2	0.0	0.1	0.0	
ICMP	0.0	0.0	0.0	0.0	

	2015	2016
protocol port	total	total
	(%)	(%)
TCP	93.8	94.4
80 (http)	52.5	46.8
443 (https)	37.4	43.7
81	0.5	0.5
993 (imaps)	0.5	0.5
1935 (rtmp)	0.5	0.3
UDP	5.2	5.0
443 (https)	1.0	1.5
1701 (12tp)	1.8	1.0
4500 (nat traveral)	0.3	0.2
53 (dns)	0.1	0.2
ESP	0.7	0.4
GRE	0.3	0.1
ICMP	0.0	0.0

Table 4: Usage by Port for Mobile Users

morning to night. On weekdays there are three peaks representing the morning commute hours, lunch breaks, and evening to night periods, demonstrating that usage times are different from broadband.

2.5 The Impact of the Kumamoto Earthquakes

The Kumamoto earthquakes that occurred in April of this year affected broadband traffic in the prefecture, as shown in Figure 10. Earthquakes with a seismic intensity of 7 occurred during the night of April 14 and at daybreak on April 16, and traffic dropped immediately after they struck. We can see that power outages from the 16th also caused the overall volume to decrease, then recover over a period of about a week. We did not observe such a large impact in neighboring prefectures.

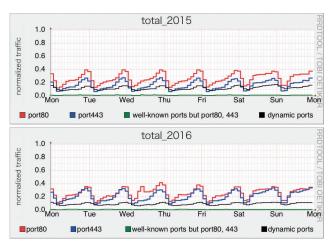


Figure 8: Weekly TCP Port Usage Trends for Broadband Users 2015 (top) and 2016 (bottom)

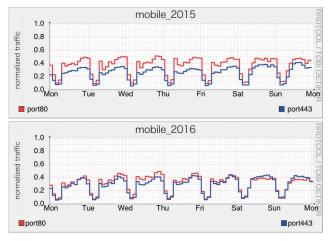


Figure 9: Weekly TCP Port Usage Trends for Mobile Users 2015 (top) and 2016 (bottom)

2.6 Conclusion

One of the broadband traffic trends for this year we can identify is that increases in the volume of traffic are accelerating. Over the last year download volumes climbed 47%, while upload volumes also grew 18%. Last year these increases were 38% and 15%, and the year before that they were 27% and 13%, so growth rates are rising. In addition, the use of HTTPS has expanded greatly over the past two years, with traffic volumes now almost on par with HTTP. Reasons for the increase in traffic include more frequent and larger software updates, and the widespread use of flat-rate music and video streaming services. Another important point is that migration to the FLET'S NGN network is progressing, and this access network infrastructure is supporting increased traffic. The mobile traffic that we added since the last report has also grown significantly over the past two years. This is different from broadband traffic in several ways, such as there being fewer heavy users, and higher levels of usage during weekday commute hours and lunch breaks.

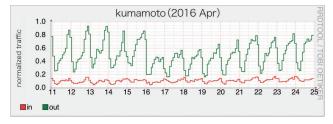


Figure 10: Kumamoto Prefecture Broadband Traffic April 11 to 24, 2016

Kenjiro Cho Research Director, Research Laboratory, IIJ Innovation Institute Inc.

3. Technology Trends

Software-Defined Container-Based Data Centers

3.1 Overview

Here we will give an outline of the co-IZmoSD software-defined container-based data center we are developing and testing, as well as associated research, with the aim of realizing both high efficiency and reliability by exerting precise control over data center facilities using software.

3.2 Data Center Requirements

The minimum requirements for enabling an Internet service are an Internet connection and an IT server to run the service on. The fact that this is all you need to provide services to every Internet-connected user is one of the Internet's great advantages. However, more consideration will be required to continuously provide services to a large number of users. There are a range of issues that are almost impossible to deal with in an ordinary home or office, such as redundancy in anticipation of a failure occurring (a power outage, interruption of Internet access, or fault in equipment accommodating access lines), securing the floor load of the location where racks housing large numbers of IT servers will be installed, and increasing the cooling capacity for processing the exhaust heat of equipment.

Data centers provide features for enabling stable Internet services*1. They are facilities specifically designed to run massive numbers of IT servers stably and continuously, resolving the aforementioned issues all at once. Elements such as the cooling systems, power systems, and external connectivity have redundant configurations, enabling operation to continue even if a fault occurs in part of the data center. Additional services are also provided, such as physical security that includes strict entry management and device status monitoring, as well as device protection through fire extinguishing equipment specifically designed for IT devices.

Data centers need to provide stable operation, but leading-edge data centers are also expected to offer other features. "Optimization" and "massive integration" have been keywords for the technological development of Internet-oriented data centers over the past ten years or so. There is also a strong connection between these two features and the growth of cloud computing.

The terms "hosting" and "housing/colocation" are used as data center usage categories. Although the ownership of equipment differs, in both instances the role of the data center is to install the equipment that customers will use. In these cases, the main service of the data center is to provide the surrounding environment for the installed equipment. As long as an agreement is in place, it is necessary to continue providing services such as cooling and power regardless of equipment operating status, even in extreme cases such as when no actual equipment exists.

In contrast, at data centers whose main purpose is cloud computing, in most cases either entire floors or the entire data center itself is used for a single cloud service. Because the data center is occupied by a single service or operator, it is characteristic for the operation of the data center and equipment to be unified. By unifying these, it is possible to apply operating and optimization techniques not used in traditional data centers. For example, you can install IT servers that operate in higher temperatures than normal and change various design criteria such as the building and cooling equipment to create data centers that don't need as much cooling. There have also been aggressive trials involving IT servers with small integrated backup power supplies combined with power management software to eliminate the expensive backup power supply equipment (massive batteries or power generators) usually required at data centers. This demonstrates that it is becoming more appropriate to think of modern data centers targeted at cloud computing as organic systems that are integrated with the servers they accommodate, rather than facilities merely for housing IT servers.

^{*1} In a broad sense "data center" can refer to any building that houses computer equipment, but here we use the term to mean only data centers for Internet services (IDC).

3.3 Data Center Optimization

Data centers provide economies of scale due to the fact that large numbers of servers are housed in the same place. This is because ancillary equipment can be shared, and also operated at an efficient scale, making it possible to maintain data centers in a more

efficient state than other environments. An indicator called PUE (Power Usage Effectiveness) is frequently used to show data center efficiency. PUE is defined using the following formula.

 $PUE = \frac{Total \ data \ center \ power}{consumption} = \frac{IT \ equipment \ power \ consumption \ +}{IT \ equipment \ power \ consumption} = \frac{IT \ equipment \ power \ consumption \ +}{IT \ equipment \ power \ consumption}$

For example:

- IT equipment power consumption = 10 kW
- Power consumption of any other equipment in the data center = 12 kW

In this case, the resulting PUE would be 2.2 as shown below.

$$PUE = \frac{10 \text{ kW} + 12 \text{ kW}}{10 \text{ kW}} = 2.2$$

PUE indicates how much facility equipment (power supply, cooling, and lighting equipment, etc.) is required to operate IT equipment, so the theoretical best value for PUE is 1.0, which means no additional equipment is required to operate IT equipment. The PUE of typical data centers in Japan is around 2.0. Data center facilities consume the same amount of power as IT equipment, but this is still substantially more efficient than operating servers in a standard office building. However, due to factors such as the overall increase in IT equipment numbers due to the growth of Internet services, we need to pursue a higher level of efficiency for data centers. In particular, the stagnation of improvements to scale efficiency is a make-or-break issue at cloud data centers where systems consisting of vast quantities of servers are constructed. A PUE of about 1.2 is given as a target value for all advanced, large-scale data centers designed and built since 2010, and apparently actual PUE performance is in the range of about 1.1 to 1.3.

Against such a backdrop, IIJ has been performing a range of data center optimizations. One example of improvements to the efficiency of data center equipment is the Matsue Data Center Park, which we have operated in Matsue, Shimane Prefecture since 2011. Matsue Data Center Park optimizes initial investment costs and operating costs using a standard configuration that consists of modular data center containers and cooling modules. The year-round PUE performance is about 1.2, making it an extremely efficient data center facility. Refer to the website*2 for more information about Matsue Data Center Park.

3.4 Integrated Data Centers

At the latest generation of data centers, where component improvement optimizations approaching the theoretical threshold PUE value of 1.0 are on the verge of being realized, a paradigm shift that includes rethinking the definition of data centers is needed to achieve higher efficiency. Instead of treating data centers as facilities for simply housing IT equipment, it is necessary to search for technology that can be applied to systems where data centers and IT equipment are integrated.

Because forms of data centers utilization that enable a shift to systems that integrate IT equipment to be considered are limited to cases where the data center operator and IT system operator are closely related or the same entity, we will refer to these as "integrated data centers" here. Table 1 shows the differences between existing data centers and integrated data centers.

Item	Existing Data Centers	Integrated Data Centers
Operator	Data center and internal systems have different operators	Data center and internal systems have the same operator
Data center environment	The data center operator cannot change environment requirements without users' permission	Configurable according to requirements due to the operators being the same
Housed equipment	Selection is not possible because housed equipment is either brought in or specified by the customer	Selection of housed equipment according to design and operating requirements is possible
Operating requirements	Static operation is carried out to constantly fulfill the service level specified in advance (with specifications for temperature and humidity, power supply, connectivity, etc.)	Operation is carried out based on criteria that are determined dynamically taking into account housed equipment and service operating requirements

Table 1: Differences Between Existing Data Centers and Integrated Data Centers

^{*2} Matsue Data Center Park (http://www.iij.ad.jp/DC/en/about/index.html)

At integrated data centers it is possible to control the IT equipment environment at your discretion, which is something data center operators could not get involved in up until now. IT system operators can also control data center behavior. At existing data centers you could only specify static operating requirements such as an IT rack exhaust temperature of 22 - 23 degrees and humidity of 40% RH. Integrated data centers enable reciprocal interactions, such as changing data center operating conditions based on the operating status of IT systems, or controlling the availability of IT systems according to data center operating restrictions. System integration provides the following benefits:

- Dynamic, highly responsive control
- · Interaction between the data center facility and IT equipment

3.5 Interaction Between Data Centers and IT Systems

A software interface for handling both the data center and IT systems is necessary to achieve a high degree of efficiency through interaction between them.

In most cases a standard API or protocol is specified for IT systems, so it is possible to use these to obtain or control various information as required. Also, progress has been made toward the examination, evaluation, and standardization of systems for the automatic control of IT servers and network switches, as well as techniques for constructing systems that consolidate and manage the racks as a whole, so the scope of control possible is sufficiently broad.

On the other hand, there are issues related to the control of data center equipment. The largest issue is that data centers are a concept representing the convergence of things and facilities, so there is no sense of the reality of the situation as with information systems. Because no end point for control has been defined, when managing a data center it is actually necessary to handle all its components individually. There are also other issues regarding these individual components. Nowadays, there are sufficient possibilities to choose components used in the data center facility that have networking functionality to communicate with each other. However, even though these components have such functionality, they still tend to use dedicated network protocols and vendor specific (non standardized) APIs. Some special care would be required to integrate such components with existing IT systems.

At the IIJ Research Laboratory, we are attempting to resolve these issues by implementing a new software layer that provides abstraction to enable data centers to be treated as part of an information system. In addition to abstraction, we are moving ahead with research into improving compatibility between data centers and IT systems by combining the following:

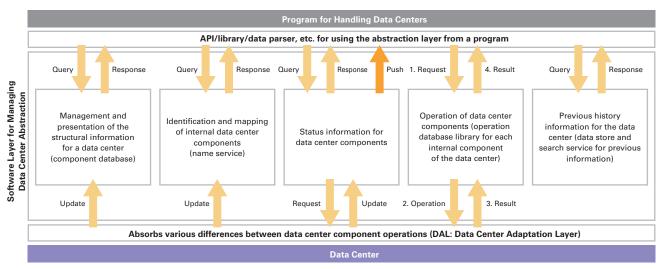


Figure 1: Software Abstraction of Data Centers

- Establishment of data center structure description techniques
- Standardization of a data format for internal information at data centers
- Preparation of procedures (APIs, etc.) for controlling the internal components of data centers
- Preparation of standard libraries for data center control programs

Figure 1 shows the components of a software group for handling data centers.

3.6 co-IZmoSD Container-Based Data Centers for Research and Development

Co-IZmoSD (Figure 2) is a data center facility we operate to perform research and development regarding data centers that are highly compatible with IT systems. It is based on co-IZmo*3, which was developed at IIJ as an integrated, compact, container-based data center in 2013. After adding functions required for research and development, co-IZmoSD was implemented in 2014. The SD part of co-IZmoSD stands for "software-defined," and indicates this experimental facility is aimed at maximizing the components in existing data center facilities that can be controlled using software.

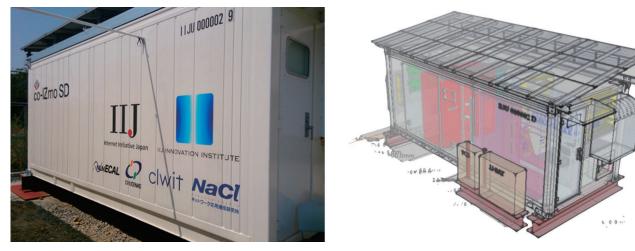


Figure 2: External View (Left) and Perspective View (Right) of co-IZmoSD

ltem	co-lZmo	co-lZmoSD
Architecture	Container-based data center with integrated IT/cooling modules	←
Size	ISO 20 ft container, High Cube (9.6 ft)	ISO 20 ft container, standard (8.6 ft)
Footprint	8 m x 3 m = 24 m2	←
Cooling System	Direct outside-air free cooling, chiller-less	←
Racks	3 racks (46U)	3 racks (42U)
Rack Configuration	Cold/hot aisle containment	←
Cooling Capacity	Max 30 kw (depends on outside air conditions)	←
Internal Environment Provisions	Independent standard based on Ashrae 2011 allowable 3	←
Maintenance System	Fire detection sensor, condensation sensor, etc.	←
Auxiliary Battery	None	12 KWh Li-ion battery unit
PV + PCS	None	System equipment rated for 10 KWh
Control System	Stand-alone	Stand-alone + external control hybrid
Power Supply System	Uniform	Prioritized hierarchical power supply system

Table 2: Basic Specifications and Differences Between co-IZmo and co-IZmoSD

^{*3} IIJ, "IIJ to Begin Testing Container-Unit Data Center Modules with Year-round Outside-Air Cooling" (http://www.iij.ad.jp/en/news/pressrelease/2013/0408.html).

Table 2 shows outline specifications for co-IZmo that served as the base, as well as co-IZmoSD. Because co-IZmoSD was designed as a successor to co-IZmo, a variety of improvements have been made based on the implementation and operating experience of co-IZmo. IIJ has been continuing the research and development of container-based data centers beyond co-IZmoSD, and the co-IZmo/I*4 modular data center that uses an indirect outside-air cooling system is the latest incarnation of this architecture.

As shown by the co-IZmoSD specifications in Table 2, the basic architecture is the same as co-IZmo. About the only differences are that co-IZmoSD is based in an ISO container with a lower height (standard size), and it includes various ancillary equipment such as solar cell panels and external power supply units. On the other hand, the internal structure is very different, featuring a control mechanism that offers a high degree of freedom. Figure 3 shows an outline of the internal structure of co-IZmoSD.

As illustrated in Figure 3, the various environmental sensors, actuators (fans and dampers on the air intake and exhaust, etc.) and mechanisms for controlling the power supply equipment (power system toggle switch on the power panel and sensors for the power supply, etc.) in the data center are consolidated via a PLC (programmable logic controller) network. A PLC is programmed with the minimum required logic, and enables normal data center operations or equipment maintenance work by itself. In co-IZmoSD the PLC program is further expanded into a design that enables hybrid operation combining external control with the PLC's internal control logic. PLCs are highly reliable, but it is difficult to increase the scale of the internal program or shorten the development cycle. However, implementing this in tandem with an external system as we have done here enables more advanced control that would not be possible using a regular PLC.

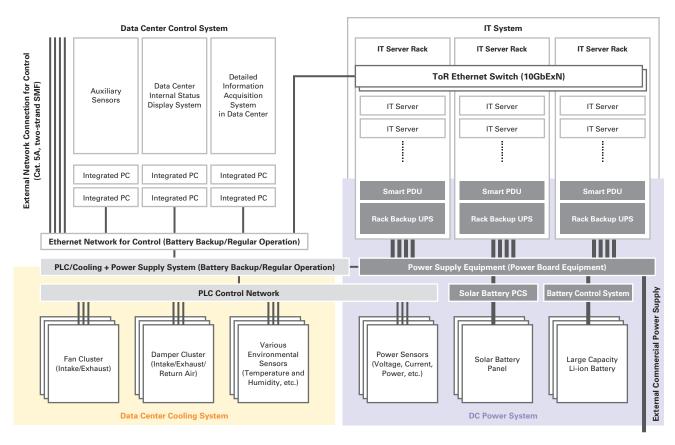


Figure 3: Internal Structure of co-IZmoSD

^{*4} co-IZmo/I (http://www.iij.ad.jp/DC/en/products/coizmo_i.html).

Components such as ancillary equipment (photovoltaic (PV) panels and PCS, large battery system), the PDU and UPS inside racks, and various sensor units not used for air conditioning control, etc., are also connected to a network. This makes it possible to access almost all components from a network outside the internal IT system or co-IZmoSD. In addition, the power supply system is equipped with features for supplying power from multiple power supply sources, and supporting coordination with each battery unit. You can also execute functions such as the partial shutdown or temporary suspension of the data center via software.

3.7 An Operating System for Data Centers

We designed and built co-IZmoSD as a research-oriented data center for testing the concept of interaction between data centers and IT systems. As co-IZmoSD provides sufficient functionality for interaction, we can verify the concept by combining these features with associated software components.

When you include IT systems, the components that make up a data center are many and varied. Data centers are also non-stop systems that are basically never shut down completely. Viewed the other way, at data centers there is always a possibility that a certain part is being replaced or is shut down for maintenance, meaning they have a fluid structure. It is difficult to control a massive system with a fluid structure from scratch via codes without any support, so there is a need for a software platform that supports the programming and execution of codes while taking these factors into consideration. We are progressing with the research and development of an operating system for data centers that assists software implementation aimed at data centers that enable flexible control through coordination with external systems, such as co-IZmoSD.

We began working on conceptual designs for a data center operating system together with the launch of co-IZmoSD, and we implemented the basic functions as a prototype in fiscal 2015. At this stage we are working on improving the quality of the software while running it on co-IZmoSD.

3.8 The Future of Software-Defined Data Centers

Data centers are already essential facilities for providing stable Internet services, and in the coming years their numbers and the scale of the IT servers they house are expected to continue growing. In light of this, the pursuit of more efficient data centers will be an unavoidable issue for Internet and cloud service providers.

In this article we provided a perspective on the data center research we are conducting at the IIJ Research Laboratory, and discussed the co-IZmoSD data centers we designed and developed and are operating to test the concept. The focus of our research using co-IZmoSD is already shifting to the software portion. In the future we will continue to perform research into IT system design and control techniques based on the premise of data centers that are made more sophisticated utilizing software that handles both data centers and IT systems in an integrated manner.

Yojiro Uo Senior Researcher, Research Laboratory, IIJ Innovation Institute Inc. Dr. Uo specializes in the research of network infrastructure systems (distributed systems, operating systems, data centers, etc.).

About Internet Initiative Japan Inc. (IIJ)

IIJ was established in 1992, mainly by a group of engineers who had been involved in research and development activities related to the Internet, under the concept of promoting the widespread use of the Internet in Japan.

IIJ currently operates one of the largest Internet backbones in Japan, manages Internet infrastructures, and provides comprehensive high-quality system environments (including Internet access, systems integration, and outsourcing services, etc.) to high-end business users including the government and other public offices and financial institutions.

In addition, IIJ actively shares knowledge accumulated through service development and Internet backbone operation, and is making efforts to expand the Internet used as a social infrastructure.

The copyright of this document remains in Internet Initiative Japan Inc. ("IJJ") and the document is protected under the Copyright Law of Japan and treaty provisions. You are prohibited to reproduce, modify, or make the public transmission of or otherwise whole or a part of this document without IJJ's prior written permission. Although the content of this document is paid careful attention to, IJJ does not warrant the accuracy and usefulness of the information in this document.

©2008-2016 Internet Initiative Japan Inc. All rights reserved. IIJ-MKTG020-0030

Internet Initiative Japan Inc.

Address: lidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan Email: info@iij.ad.jp URL: http://www.iij.ad.jp/en/