
© 2016 Internet Initiative Japan Inc.

2. Content Delivery

The technologies that comprise streaming delivery can be categorized into several classes (Table 1). These technologies were

proposed by a variety of companies, and many of them are now international standards. Combining individual technologies to

achieve optimal streaming makes it necessary to reconcile the standards involved. Currently a great shift is beginning to take place

among the “streaming formats” class of technologies.

The HTTP Live Streaming (HLS) format advocated by Apple was announced in 2009. Ever since then, this key format has played a

leading role in streaming. Its distinguishing characteristic is the adoption of segmented MPEG2-TS as the container format, with

small files storing video and audio data delivered in a continuous stream. The use of HTTP/1.1 as the delivery protocol also had a

major impact. HLS was initially a format designed for iOS, but it later became widely used on macOS, tvOS, and Android as well.

Apple has presented a standards proposal for HLS in Internet-Draft (I-D) form to the Internet Engineering Task Force (IETF) that

promotes standards for the Internet. This document is titled “draft-pantos-http-live-streaming.” I-Ds are intended to be work-in-

progress documents, and although some may be published as an RFC, others may never progress beyond the proposal stage.

Since Apple issued the first version on May 1, 2009, this I-D has continued to be submitted under the name of Roger Pantos, and

as of September 2016 it is up to version 20.

The structure of HLS is extremely simple. An example of the file containing the instructions for playback (the manifest file) is

shown below (Figure 1).

The essential part of this is the resources identified by URI. In this example, the three media files “first.ts,” “second.ts,” and “third.

ts” must be located on the media.example.com server. It doesn’t matter whether these files are mounted statically or dynamically.

Then, as you can see from the scheme name, it is indicated that these media files will be distributed via HTTP.

This manifest file is also placed on a Web server and passed on to the media player. The media player reads the reference

information and accesses the media files listed by URI in order from top to bottom. Comment rows contain reference information,

and in the case of the example shown in Figure 1, EXT-X-TARGETDURATION indicates the maximum length of the media files, and

EXTINF indicates the actual length of the next media file in seconds. In other words, we can see that the media specified by this

playback instruction file has a total playback duration of 21.021 seconds.

No standardization activity is being carried out for this I-D. To publish it as an RFC it would need to be discussed by an IETF working

group. But this I-D has not been brought up as an ongoing issue at any working group, and has yet to be discussed. It is treated as

if it were a privately published document.

In what could be interpreted as a competing standard, MPEG-DASH (Dynamic Streaming over HTTP) was standardized by the

MPEG (Moving Picture Experts Group) of the International Organization for Standardization (ISO), and published as ISO/IEC

23009-1 in 2012. MPEG is a group of experts who have been active since 1988, acting as a working group for standardization tasks.

Table 1: Streaming Delivery Structure Figure 1: HLS Manifest File Example

Industry Efforts to Unify Streaming Formats

TechnologyClass

HTML5, Flash, etc.

H.264, H.265 (HEVC), AAC, WebVTT

MPEG2-TS, MP4

HLS, MPEG-DASH, CMAF

HTTP/1.1

TCP/IP

Presentations

Codecs, metadata

Containers

Streaming formats

Delivery protocols

Transport protocols

Network protocols

#EXTM3U

#EXT-X-TARGETDURATION:10

#EXTINF:9.009,

http://media.example.com/first.ts

#EXTINF:9.009,

http://media.example.com/second.ts

#EXTINF:3.003,

http://media.example.com/third.ts

#EXT-X-ENDLIST

30

© 2016 Internet Initiative Japan Inc.

Vol. 33Dec.2016

2. Content Delivery

This group mainly focused on the area of standardization work for video and audio compression formats up until now, but as the

streaming of video over the Internet became more popular they also branched out into drawing up streaming formats.

The MPEG-DASH provisions call manifest files MPDs (Media

Presentation Descriptions). Next we will show an example of

an MPD (Figure 2).

You can see that it is structured using XML. The multiple

Representation entries defined under AdaptationSet assume

that clients will perform switching and playback dynamically.

This example demonstrates that video streams of 4 Mbps and

2.4 Mbps have been prepared on the server side, enabling

clients to select the optimal stream for their environment

(bandwidth and CPU consumption, etc.).

The HLS, MPEG-DASH, Smooth Streaming, and HTTP

Dynamic Streaming formats that are now widely used benefit

greatly from adopting HTTP/1.1 as the delivery protocol.

HTTP/1.1 was already quite prevalent, so it offered better

scalability than using dedicated streaming protocols. The

streaming formats carried over HTTP shared the idea of

performing segmentation of the data and delivering small

chunks from the server to the client.

However, during their design HLS, MPEG-DASH, Smooth

Streaming, and HDS adopted manifest files and container

formats individually, resulting in each featuring different

combinations (Table 2). These circumstances caused confusion

during content production and at CDN providers. When you

want to support a wide range of clients, you need to create

manifest files and container formats for all of them. If you are

using HLS, MPEG-DASH, Smooth Streaming, and HDS, you

have to create and manage four types of file. This increases

the workload of production sites, and requires four times as

Figure 2: MPD Example

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011

DASH-MPD.xsd" mediaPresentationDuration="PT0H1M6.1S"

minBufferTime="PT1.5S"

profiles="urn:mpeg:dash:profile:isoff-on-demand:2011"

type="static">

　<Period duration="PT0H1M6.1S" start="PT0S">

　　<AdaptationSet>

　　　<Representation bandwidth="4000000"

codecs="avc1.4d401e" height="1080" id="1"

mimeType="video/mp4" width=“1920">

　　　　<BaseURL>video_4000.mp4</BaseURL>

　　　　<SegmentBase indexRange="860-1023">

　　　　　<Initialization range="0-859" />

　　　　</SegmentBase>

　　　</Representation>

　　<Representation bandwidth="2400000"

codecs="avc1.4d401e" height="720" id="2"

mimeType="video/mp4" width="1280">

　　　　<BaseURL>video_2400.mp4</BaseURL>

　　　　<SegmentBase indexRange="859-1022">

　　　　　<Initialization range="0-858" />

　　　　</SegmentBase>

　　　</Representation>

　　</AdaptationSet>

　<AdaptationSet>

　　<Representation bandwidth="128000" codecs="mp4a.40.2"

id="5" mimeType="audio/mp4">

　　　　<BaseURL>audio_128.mp4</BaseURL>

　　　　<SegmentBase indexRange="783-946">

　　　　　<Initialization range="0-782" />

　　　　</SegmentBase>

　　　</Representation>

　　</AdaptationSet>

　</Period>

</MPD>

Table 2: Common Streaming Formats

HTTP Live Streaming

Specification

Apple

Container Format

Segmented MPEG2-TS

Latest version supports MP4

Standardization

Not standardized

However, it is used extensively even outside Apple

Manifest File

m3u8

An independent extension
of the m3u standard

MPEG-DASH ISO/IEC
MP4, MPEG2-TS

(MP4 is used most often)

International standard

Detailed definition is carried out in various places

(the MPEG Industry Forum, etc.)

MPD

Written in XML

Smooth Streaming Microsoft MP4 Noneisml

HTTP Dynamic Streaming Adobe f4f None
f4m

Written in XML

Name

31

© 2016 Internet Initiative Japan Inc.

much storage to be prepared. It can also lead to decreased cache efficiency in the distribution systems of CDN providers. On top

of that, the decision of which systems to implement on playback devices is a tricky issue. The adoption of Smooth Streaming and

HDS has actually been dropping, with the HLS and MPEG-DASH systems chosen in most cases, but this doesn’t change the fact

that there are glaring inefficiencies.

Extensive structural changes have been made in the latest version 20 of HLS. It now supports MP4. Support for fragmented MP4

was added to the fragmented MPEG2-TS specified up until now. The new Packet Audio and WebVTT multimedia formats have

also been added. Fragmented MP4 (fMP4) is a format also standardized by ISO/IEC that refers to a series of data sequenced into

multiple files.

Support for this has created the possibility of being able to merge HLS and MPEG-DASH media libraries. If you had a single type of

media library prepared using fragmented MP4, it could be distributed to multiple systems. Also from a content delivery business

perspective it would provide for more efficient cache operation. This is because for both HLS and MPEG-DASH the most data-

heavy part is the fragmented MP4 file group storing the video data.

Moves such as this by Apple correspond to the trend towards unifying streaming formats. In line with this, the Common Media

Application Format (CMAF) has been proposed. The original draft was proposed by Apple and Microsoft, and it has been

discussed by MPEG (The Moving Picture Experts Group). It is more realistic for this kind of streaming format standardization

work to be carried out by MPEG rather than IETF. After all, MPEG is a community where experts in areas such as container

formats and codecs gather.

The following text is given as the subtitle for the CMAF standard proposal.

Media Application Format optimized for large scale delivery of a single encrypted, adaptable multimedia presentation to a wide

range of devices; compatible with a variety of adaptive streaming, broadcast, download, and storage delivery methods

It appears to comprehensively cover the technology involved, but CMAF carries over the results achieved using HLS and MPEG-

DASH. To put it another way, you could say it covers all the streaming format issues that have cropped up to date.

Table 3: Relationship Between HLS, MPEG-DASH, and CMAF

HTTP Live Streaming

Manifest File

m3u8

MPEG-DASH MPD

Containers

CMAF

<CMAF internal structure>

+ CMAF Presentation

 + CMAF Selection Set

 (Can accommodate multiple different elements in the same content; camera footage, codecs, multi-lingual content, etc.)

 + CMAF Switching Set

 (Can accommodate multiple versions of the same content using different encoding formats)

 + CMAF Track

+ CMAF Fragments

+ CMAF Header

Name

32

© 2016 Internet Initiative Japan Inc.

Vol. 33Dec.2016

2. Content Delivery

CMAF does not define manifest files, players, or delivery protocols. HLS and MPEG-DASH can be called up from the manifest files

that each have.

CMAF has a hierarchical structure, and it is compatible with multiple languages and different bitrates, etc. (Table 3).

If media library creation is unified using CMAF, it will drastically reduce the work associated with creating content. Although

it doesn’t provide any direct benefits to users, it seems to be accepted that this is a necessary move to further popularize

streaming media.

The significance of CMAF will come down to whether companies like Apple or Microsoft can set a major trend in the industry,

instead of following their own paths. With this kind of framework, and the interactions between people cultivated through related

discussions, a better response should be possible the next time a new challenge arises. You could say that innovation is more

likely to originate from aiming to make further improvements based on what we have in place now, rather than from a unified

protocol or format.

Finally, allow me to point out two challenges we face going forward.

The first is finding a way to reduce the time it takes for video viewing to start. Current live streaming usually lags behind real time

by around 30 seconds or more. There are multiple reasons for this, such as the time it takes to encode and the network upload time,

as well as the number of segments to buffer before initial playback. These aren’t things that can be changed easily by configuring

the encoder or delivery server, so they are hard to control on the stream generation side. But there is demand from people who

would like to play back live event video in as close to real time as possible. This issue is widely recognized in the industry, and at

some point in the future it is likely a proposal for improvement will be made.

The second challenge is offline playback. For the viewing of video on mobile devices, the download caps set by telecom carriers

are a particularly large hurdle. Many people also shy away from video streaming on mobile devices. To cope with this, there is

technology that downloads video to a mobile device while connected to Wi-Fi, enabling it to be viewed offline as well.

Google has added a system for offline playback to its YouTube app. You can save certain videos, and watch them offline for up

to 48 hours. This function is not unlocked for all users, and is mainly enabled in countries where communications infrastructure

is still developing. HLS has also put together a system for offline playback. It requires the creation of corresponding codes in

an iOS app.

In both cases support is provided in some apps and systems, but when the technology begins to take off in earnest standardization

will be necessary. It remains to be seen whether the industry can rise to the challenge and follow through with moves such as these.

Author:

Bunji Yamamoto

Mr. Yamamoto is a Senior Engineer in the Content Delivery and Media Business Department of the Corporate Planning Division, IIJ.
He joined IIJ Media Communications in 1995 and has worked at IIJ since 2005. He is mainly involved with the development of streaming
technology. Among his contributions to development of the market is the organization of the Streams-JP Mailing List, which discusses
this technology.

33

	2.	Content Delivery

