
© Internet Initiative Japan Inc.

Using Deep Learning on URL Strings
to Detect Rogue Websites

*1 P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “PhishNet: Predictive blacklisting to detect phishing attacks,” in 2010 Proceedings IEEE INFOCOM, ser.

INFOCOM 2010, pp.1–5.

*2 S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for detection and measurement of phishing attacks,” in Proceedings of the 2007 ACM Workshop

on Recurring Malcode, ser. WORM ’07. New York, NY, USA: ACM, November 2007, pp.1–8.

*3 Y. Zhang, J. I. Hong, and L. F. Cranor, “CANTINA: A content-based approach to detecting phishing web sites,” in Proceedings of the 16th international conference

on World Wide Web, ser. WWW ’07. ACM, May 2007, pp.639–648.

While the Internet is now used to provide a range of useful

services, it is also increasingly being used maliciously. As it

is difficult to keep track of everything on huge, complicated

systems manually, a range of automation strategies are em-

ployed. Security applications of deep learning have attracted

attention in recent years. If deep learning can be used to

assist humans in fields where experience and knowledge

are crucial, this should enable a greater number of people to

engage in higher-level tasks and, as a result, make it pos-

sible to provide safe services. In this issue, we present our

attempt to use deep learning to prevent cyberattacks.

2.1 Advent of the Web and the Battle
 against Malicious Sites
Some 30 years have passed since Tim Berners-Lee, then

a fellow at CERN (the European Organization for Nuclear

Research), released CERN httpd, the first ever World Wide

Web (WWW) server software. It constituted a means of

using hypertext on the Internet, and combined with HTTP

(Hypertext Transfer Protocol) and URLs (Uniform Resource

Locators), it provided the technology to connect the world’s

information resources in a blink of an eye. It is no coinci-

dence that the 1980s and 90s were also a time that saw

the explosive spread of TCP/IP-equipped BSD UNIX, particu-

larly among educational institutions, laying the groundwork

for connecting the world’s computers to one another. The

release of Mosaic, a GUI-based Web browser, by the United

States’ National Center for Supercomputing Applications

(NCSA) also made it possible for non-computer-experts to

easily access the world’s information. Web technologies

continue to evolve even now, with new services popping up

all over the place daily.

Something common to all technologies is that those tech-

nologies with the potential to make the world a better place

can also make it worse. As all sorts of services become

available online, so too emerge attempts to deceive and

defraud via the Web. A common example involves setting

up a fake version of a well-known service or banking web-

site and sending out fake emails or other communications

to steer users into the site, which is then used to steal their

personal information, passwords, and the like. Fraud and de-

ception existed before the advent of the Web, of course, but

just as with email spam, digitization has lowered the cost

and made it possible to target a larger number of people.

The information age has brought benefits for both legitimate

society and its underbelly alike.

Protecting users from accessing malicious sites has been

a key issue for network services operators in recent years.

On their end, ISPs commonly provide services that block

rogue sites for their users. If you are responsible for your

organization’s information systems, perhaps your activities

involve having some sort of security software installed for

your organization’s users. The technology commonly used

to defend against rogue sites at present basically uses

blacklists. But, as you can probably imagine, it is not really

feasible to cover the entirety of the vast space that is the

Web using blacklists alone. Researchers have been looking

for more efficient ways of recognizing malicious sites. One

attempt, for example, has involved using the domain names

of known rogue sites to mechanically derive similar strings,

thereby producing a large number of new potential malicious

domain names from a short blacklist*1. Another has involved

going beyond the idea of mere lists to look at features such

as when the domain was registered and its Google search

ranking, with domain names that have only recently been

registered, have a low search ranking, and so on being

treated as less trustworthy*2. Other techniques that have

been proposed include actually retrieving and analyzing the

content of web pages via a transparent proxy to detect

whether a site is malicious or not*3. And as deep learning

has advanced in recent years, it has also increasingly been

employed in security applications.

2. Focused Research (1)

16

Vol. 41Feb.2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

*4 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing sys-

tems, 2012.

*5 K. Shima, D. Miyamoto, H. Abe, T. Ishihara, K. Okada, and Y. Sekiya, “Classification of URL bitstreams using Bag of Bytes,” in Proceedings of First International

Workshop on Network Intelligence (NI 2018), 2018.

2.2 Meaning Hidden in URL Strings
The battle against rogue sites is a never-ending one. As

soon as a technique for defending against such sites is de-

vised, a mechanism for avoiding it appears. Even so, it is still

important to consider new defense techniques if we are to

make the Internet safer.

The proxy approach of actually retrieving page content to

determine whether a site is rogue has the advantage in

terms of detection rates. The act of actually accessing a

site, however, can be dangerous in some cases. Given pro-

cessing load, privacy, and other issues, methods that do not

involve retrieving any actual content have also been pro-

posed. The simplest of these is to look solely at the URL

itself. The issue here is whether the strings that make up

the URL contain any information that can indicate whether

a site is rogue or not.

No one has a precise answer to this question. But a look at

past research shows that some people have thought there

may be meaning to be found. One well-known idea, for

example, is to look at whether the domain name is a pro-

nounceable string. Domain names often have something to

do with actual goods or services, so URL strings are often

based on natural language words and names and thus in-

evitably turn out to be strings that humans can pronounce.

Some malware uses mechanically generated domain names

(from a domain generation algorithm, or DGA), and in many

cases these names consist of strings that cannot be pro-

nounced. The idea is that if a distinction can be made here,

it may be possible to distinguish between ordinary and sus-

picious Internet access.

Another idea is that an unusually large number of sub-

domains (host names with lots of dots in them) and an

unusually deep path (URLs with lots of slashes in them)

often indicate malicious intent. Under this approach, it is

common practice to consider various criteria based on em-

pirical rules, combining those criteria to determine whether

something is malicious or not.

And at the forefront of techniques in this area, researchers

are looking into the use of deep learning to assess URLs.

2.3 Resurgence of Deep Learning
Deep learning began to rise in the popular mindset around

five or six years ago. Neural networks themselves, which are

used in deep learning, have actually been around for long

enough to be labeled as classical. However, the approach of

deep learning, which uses multilayer neural networks, was

long thought of as being hamstrung by practical impediments

given the amount of calculation involved and the technical

difficulties in getting models to learn properly. Flash forward

to the 2010s, though, and the development of techniques

that produced remarkable results in the area of image rec-

ognition flung the field into the spotlight. Opinion varies, but

the most common account seems to be that the deep learn-

ing-based image recognition system*4 demonstrated by Alex

Krizhevsky and colleagues at the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2012 marked the start

of the modern wave of deep learning that has propagated

through to today. The model achieved a sharp reduction of 10

percentage points in the error rate from the previous mark of

around 25%, demonstrating that deep learning can be applied

to real-world scenarios. Use of deep learning subsequently

became widespread, mainly in image and voice recognition,

and it has also been applied to natural language translation,

document classification, and even the strategy game Go.

In networking as well, researchers continue to put forward

deep learning-based techniques, mainly in the area of secu-

rity. In this article, we describe our proposal*5 for detecting

malicious sites based on URL strings, but we note that this

is naturally not the first proposed approach of its type in the

1717

© Internet Initiative Japan Inc.

world and that we expect many researchers and engineers to

put forward even better strategies going forward. Creating

something that will work indefinitely is not easy in network

environments, particularly in distributed autonomous environ-

ments such as the Internet. Systems and data change with

the times, and it is impossible to know all of the information

therein because we can only ever see a portion of the world

at once, and the information we can see becomes outdated

almost as quickly as you can blink.

Deep learning is not an all-powerful approach. We do not yet

know whether it will produce an intelligence that exceeds

human capabilities, an idea that is often bandied about, but

we do know what it is currently capable of.

Deep learning is a subset of machine learning in which a set of

operations are performed on a given input vector to produce

a separate output vector. It is used in classification problems

and identification problems. An example of an image recog-

nition application is a system that accepts an image of a cat

(converted into a vector representation) and gives either a 0

or a 1 as output to indicate whether or not the image is a cat.

Deep learning requires a large amount of data to determine

what set of operations to perform. In the cat example, this

would be a large quantity of cat images as well as images

of objects other than cats. This is called the training data.

When the data are labeled so that the answers are known,

this is called supervised learning, and when this is not the

case, it is called unsupervised learning (semi-supervised tech-

niques that fall between these two also exist). Deep learning

has produced great results with these sorts of classification

problems.

2.4 Vectorizin URLs
Now let’s move on to our URL classification problem. Our

objective is to determine whether a given URL points to an

ordinary, unproblematic site or to a rogue site. To use deep

learning methods, we first need to convert the URLs into a

vector representation that a deep learning model can take

as input.

Before the rise of deep learning, the task of defining these

vectors (feature engineering) was crucial to machine learn-

ing. This is because how you define what information is

necessary and sufficient for differentiating your data ahead

of time greatly influences performance. As mentioned pre-

viously, in URL classification, a variety of factors have

been studied and validated as features that can be used

to distinguish URLs, including whether the strings are pro-

nounceable, the number of dots and slashes, the ratios of

alphabet, symbol, and number characters, the position of

characters, the frequency of n-gram strings, and so on.

Haphazardly increasing the number of features can affect

how long it takes to crunch the numbers, so with conven-

tional machine learning methods of the past, experts with a

deep knowledge of the dataset in question had to carefully

select features likely to be useful through painstaking anal-

ysis of existing data.

It is said that deep learning, in contrast, can discover fea-

tures for itself when trained using a large amount of data. In

reality, it is not that simple, as careful preprocessing of the

data often influences the final results, but it is also true that

quantity of data can mitigate the effort needed for feature

engineering to an extent.

To classify URLs in our system, we will not use existing fea-

tures. Instead, we define a simple transformation to convert

URL strings into fixed-length vectors. Past wisdom certainly

can be used to classify URLs, but it is not necessarily pos-

sible to define features that will always be useful when

working with other datasets in the future. There is also the

tentative prospect of perhaps being able to use the same

strategy on other datasets if we discover that it is possible

to distinguish URLs using simple preprocessing and a large

quantity of training data.

The vectorization procedure we adopted is as follows.

1.Split the URLs into individual characters

2.Convert the characters to hexadecimal ASCII codes

3.Extract byte values beginning at the start of the host part

and the path part separately, shifting 4 bits at a time

4.Count how many times each value (from 0x00 to 0xFF)

appears in the host part and path part, respectively, to

form 256-dimensional vectors

5.Combine the 256-dimensional vectors created from

the host part and the path part to form a 512-dimen-

sional vector

6.Normalize the vector

18

Vol. 41Feb.2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

Figure 1 shows steps 1 through 3. In step 4, we then count

the values. The counts (in parentheses) for the sequence

shown in Figure 1 are as follows.

Denoting the host vector as V and the ith element as vi (where i is

the extracted value), v0x16 = 1, v0x2E= 3, v0x42 = 1, … ,v0xE6 = 3.

Positions corresponding to unextracted values will contain

a 0. Any original URL of any length can be converted into a

512-dimensional vector in this manner. But the longer the

URL, the larger the size of the vector, so we normalize the

vectors in step 6. We define the resulting 512-dimensional

vector to be the “URL feature vector”.

2.5 Designing the Neural Network
We are now ready to convert the URLs to fixed-length vec-

tors. Next we have to decide how to train on that URL feature

vector. In our attempt here, we used a simple 3-layer neural

network. Although this is a rather shallow network for deep

learning, it should be sufficient to determine whether this

sort of method is effective or not.

Figure 2 shows the topology of the neural network we used.

Some readers may have seen this topology somewhere be-

fore. This three-layer, fully connected topology appears as

a sample in the Chainer open source deep learning library

(https://chainer.org/) developed by Preferred Networks, and

is used to recognize handwritten numerals from the MNIST

dataset (http://yann.lecun .com/exdb/mnist/). Our work is

based on this, with the following two changes.

w w . i . d j / n e . t lw i j a . p i d x h m

www.iij.ad.jp/index.html

77,77,77,77,77,72,2E,
E6,69,96,69,96,6A,A2,
2E,E6,61,16,64,42,2E,
E6,6A,A7,70

3F,F6,69,96,6E,E6,64,
46,65,57,78,82,2E,E6,
68,87,74,46,6D,D6,6C

7777772E69696A2E61642E6A703F696E6465782E68746D6C

Extract 8-bits values by shifting 4 bits in the HEX values

Convert the URL into HEX values

Split characters

Count the number of unique values for the host part and the URL
path part respectively (Bag of features)

URL string

Host vector (256-length) Path vector (256-length)

512-length

256-length

256-length

(fully connected layer)

0.75 dropout

0.75 dropout(fully connected layer)

(fully connected layer)

x
1

x
2

x
0

w
1

w
2

w
0

x
254

x
255

x
253

w
254

w
255

w
253

v
507

v
506

v
509

w
255

v
508

v
511

v
510

v
1

v
0

v
3

w
255

v
2

v
5

v
4

y
0

y
1

・・・・・

・・・・・

・・・・・

Figure 2: Neural Network Topology

Figure 1: URL Vectorization

0x16 (1), 0x2E (3), 0x42 (1), 0x61 (1), 0x64 (1), 0x69 (2), 0x6A (2),0x70 (1),
0x72 (1), 0x77 (5), 0x96 (2), 0xA2 (1), 0xA7 (1), 0xE6 (3)

1919

© Internet Initiative Japan Inc.

2.Completeness: It is not possible to show whether the

data used to train the model is a true representation

of the general picture. If the model is trained on bi-

ased data, it will be unable to cope with different

patterns when they appear. In the case of handwrit-

ten digit recognition, the problem space is somewhat

limited since it only involves the digits 0 through 9,

whereas URL strings on the Internet represent a vir-

tually unlimited space, so the scope of applicability

will naturally differ.

Under the provision that such problems exist, it is important

to prepare data that is as accurate and complete as possible.

The data we use comprises active phishing sites listed on

PhishTank (https://www.phishtank.com/). PhishTank by no

means provides an exhaustive list of all the rogue sites out

there, so although completeness is not guaranteed, the data

offer a degree of credibility since the process of determining

whether a site is a phish or not involves human verification

via a voting system. Compiling data on ordinary (non-rogue)

sites is more difficult. For verification, we take sites ap-

pearing in a particular research institution’s access logs and

exclude those listed on PhishTank, defining such sites to be

non-rogue sites. To enhance completeness, however, we

would need to perform additional tests based on different

types of access logs.

1.Number of input/output dimensions: With the MNIST

sample, input images are 28x28 pixels, yielding 784

input dimensions. And the output is 10-dimensional be-

cause the output values are the digits 0 through 9. Our

input is the 512-dimensional URL feature vector, and

our output is 2-dimensional, being the value 0 or 1,

indicating whether a site is rogue or not.

2.Dropout rate: The MNIST sample does not use dropout,

a method for preventing overfitting, but we observed

serious overfitting with our data and thus set a fairly

high dropout rate.

We used Chainer to verify our proposed approach. The neu-

ral network model we built in Chainer is shown in Table 1.

2.6 Data Source Selectionk
With our data structures and neural network model in place,

we can now use actual data to verify our approach. Two

major issues present themselves in dynamic environments

like the Internet.

1.Data accuracy: With datasets like MNIST, the data

are already fully validated and properly labeled (in the

case of MNIST, this means the handwritten digits

and the values they represent). Accurately labelling

data observed/collected via the Internet, meanwhile,

can be problematic. If the model is trained on incor-

rect information, it will naturally end up predicting

incorrect answers.

from chainer import Chain
import chainer.functions as F
import chainer.links as L
class Model(Chain):
 def __init__(self):
 super(Model, self).__init__()
 with self.init_scope():
 self.l1 = L.Linear(None, 256)
 self.l2 = L.Linear(None, 256)
 self.l3 = L.Linear(None, 2)
 def __call__(self, x):
 h1 = F.dropout(F.relu(self.l1(x)),
 ratio=0.75)
 h2 = F.dropout(F.relu(self.l2(h1)),
 ratio=0.75)
 y = self.l3(h2)
 return y

Table 1: Neural Network Model Built in Chainer

20

Vol. 41Feb.2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

*6 J. Saxe and K. Berlin, “eXpose: A character-level convolutional neural network with embeddings for detecting malicious URLs, file paths and registry keys,” CoRR,

vol. abs/1702.08568, February 2017.

2.7 Applicability of Deep Learning
We randomly extract around 26,000 URLs each from the

two types of data sources prepared per the previous sec-

tion. Of this, 80% is used for training. When we used the

remaining 20% to assess accuracy, we found that we were

able to correctly distinguish between rogue and non-rogue

URLs for 94% of the data. Opinion may vary on whether

this is a good result or not. Some classification methods put

forward in the past have achieved better outcomes than this

figure. In some cases, those methods also used information

other than just the strings (e.g., Whois information, Google

search ranking), so simple comparisons with our approach

are not possible. Another attempt employed deep learning

on URL strings alone*6 in a manner similar to our approach,

yielding better classification accuracy than we achieved.

Yet when we independently implemented the neural net-

work proposed in that study and tested it on our dataset, we

were unable to replicate the high accuracy reported in that

paper. The takeaway here is that even with the same neural

network model, accuracy can vary significantly depending

on the dataset used for training.

Since it is impossible to obtain all the world’s data, trained

models will inevitably carry some bias. The term big data

seems to have fallen by the wayside a bit lately, but we

think it is likely that organizations with large stores of

wide-ranging data will continue to occupy an advantageous

position in the deep-learning world as well; indeed, that ad-

vantage may even widen.

2.8 Conclusion
We have described our attempt to apply deep learning to the

task of identifying rogue URLs. Despite only using a simple

neural network to test our approach, we were able to clas-

sify URLs with 94% accuracy. This exercise also reaffirmed

the difficulties in collecting data and the advantages that

having data imparts.

We can expect deep learning to increasingly be applied to

network data ahead. With computing power increasing, it

has become relatively easy to use deep learning. We hope

to incorporate new technologies into our approach as we

work toward making the Internet even safer going forward.

Acknowledgments

This research was supported by JST, CREST, JPMJCR 1783.

Keiichi Shima

Deputy Director, Research Laboratory, IIJ Innovation Institute

2121

	2.	Focused Research (1)
	2.1 Advent of the Web and the Battle against Malicious Sites
	2.2	Meaning Hidden in URL Strings
	2.3	Resurgence of Deep Learning
	2.4	Vectorizin URLs
	2.5	Designing the Neural Network
	2.6	Data Source Selectionk
	2.7	Applicability of Deep Learning
	2.8	Conclusion

