
Vol. 45
Internet
Infrastructure
Review

Feb.2020

Periodic Observation Report

Internet Trends as Seen
from IIJ Infrastructure—2019

Focused Research

Acquiring Forensic Memory Images
on Linux

Internet Infrastructure Review
February 2020 Vol.45

© Internet Initiative Japan Inc.

Executive Summary . 3

1. Periodic Observation Report . 4

Topic 1 BGP / Number of Routes . 4

Topic 2 DNS Query Analysis . 5

Topic 3 IPv6 . 7

Topic 4 Mobile FLET’S and Natural Disasters . 11

Topic 5 The Transition of the Bandwidth of IIJ Backbone Circuits . 14

2. Focused Research . 16

2.1 Linux Memory Dump Toolsn . 16

2.2 What is LiME? . 16

2.3 Compiling LiME . 16

2.4 Dumping Memory to an External Drive . 17

2.5 Dumping Memory via the Network . 18

2.6 What is Crash? . 19

2.7 Analyzing the Memory Image . 20

2.8 Tips for Acquiring Memory Images . 21

2.9 Volatility 3 . 22

2

© Internet Initiative Japan Inc. 3

Vol. 45Feb.2020

Executive Summary

Executive Summary

Junichi Shimagami

Mr. Shimagami is a Senior Executive Officer and the CTO of IIJ. His interest in the Internet led to him joining IIJ in
September 1996. After engaging in the design and construction of the A-Bone Asia region network spearheaded by IIJ,
as well as IIJ’s backbone network, he was put in charge of IIJ network services. Since 2015, he has been responsible
for network, cloud, and security technology across the board as CTO. In April 2017, he became chairman of the
Telecom Services Association of Japan MVNO Council.

Here is the final IIR for 2019. Japan suffered many natural disasters in 2019, not least those associated with
heavy rainfall events. The heavy downpours in northern Kyushu in August, Typhoon Faxai, which caused
widespread damage centering on Kanto in September, and Typhoon Hagibis remain fresh in memory. The
term global warming tends to bring to mind rising atmospheric temperatures, but sexperts tell us that rising
levels of greenhouse gases in the atmosphere will alter the overall state of the atmosphere, causing rainfall
patterns to gradually change.

Companies in the information and communications industry are also taking action by switching to energy-sav-
ing equipment and pursuing energy efficiency in the datacenter, for instance. Against this backdrop, it was
announced that the prototype of RIKEN’s Fugaku supercomputer had taken the top global spot in the Green
500 ranking of the world’s most energy-efficient computers.

Information and communications plays a diverse role in building a sustainable world, including through the
use of energy-saving equipment and the use of information and communications technology to reduce energy
consumption. IIJ will also continue to develop technology with that in mind.

The IIR introduces the wide range of technology that IIJ researches and develops, comprising periodic obser-
vation reports that provide an outline of various data IIJ obtains through the daily operation of services, as
well as focused research examining specific areas of technology.

The periodic observation report in Chapter 1 presents the 2019 edition of our rundown of Internet trends
as viewed from IIJ infrastructure. The report covers data on the number of IPv4 routes on the Internet, an
analysis of DNS queries from the full resolver IIJ provides to users, IPv6 usage on the IIJ backbone, traffic
on mobile networks and the FLET’S network around the time of natural disasters, and the history of the IIJ
backbone.

For the first time, we observed a decline in the number of unique IPv4 addresses in advertised routes, and
this will bear watching ahead. Our observations also confirm that the use of IPv6 continues to rise steadily,
as evidenced by increasing traffic volumes and increasing use among many service operators. And our anal-
ysis of traffic around October 12, when Typhoon Hagibis passed through Japan, showed a clear difference
from the usual usage patterns.

The focused research report in Chapter 2 explains Linux memory imaging tools that can be used with the
Volatility framework, which we use to analyze memory images when performing incident response and foren-
sics. The report looks at LiME and crash, two tools that can be used to acquire Linux memory images, and
describes how to acquire memory images in a way that has minimal impact on disk forensics.

Through activities such as these, IIJ strives to improve and develop its services on a daily basis while main-
taining the stability of the Internet. We will continue to provide a variety of services and solutions that our
customers can take full advantage of as infrastructure for their corporate activities.

© Internet Initiative Japan Inc.

1. Periodic Observation Report

Internet Trends as Seen from IIJ Infrastructure
—2019

To provide Internet services, IIJ operates some of the largest

network and server infrastructure in Japan. Here, we exam-

ine and discuss current Internet trends based on information

obtained through the operation of this infrastructure.

We cover the topics of network routing information, DNS

query information, and IPv6 usage, as well as the impact of

natural disasters on mobile and FLET’S connection services.

We also report on the current state of the backbone network

that supports the bulk of IIJ’s traffic.

Topic 1

BGP / Number of Routes

We start by looking at IPv4 full-route information advertised by

our network to other organizations (Table 1). This time around,

we also show the number of unique IPv4 addresses contained

in the IPv4 full-route information (Table 2). During the past

year, the maximum size of IPv4 addresses allocated by APNIC

(and JPNIC) fell to /23 (512 addresses).

The total number of routes, while seeing a slightly smaller

increase than in the previous year, now exceeds 760,000.

Together, the /22, /23, and /24 prefixes account for 80.1% of

all routes. Meanwhile, the number of unique IPv4 addresses,

although accounting for less than 1% of the total, fell for the

first time in the past nine years. Whether this is a temporary ef-

fect, perhaps due to the removal of unauthorized routes using

RPKI, or the first sign that the IPv4 Internet is shrinking is

something that will bear close watching ahead.

Table 1: Number of Routes by Prefix Length for Full IPv4 Routes

Table 2: Total Number of Unique IPv4 Addresses in Full IPv4 Routes

Date

Sep. 2010

Sep. 2011

Sep. 2012

Sep. 2013

Sep. 2014

Sep. 2015

Sep. 2016

Sep. 2017

Sep. 2018

Sep. 2019

No. of IPv4 addresses

2,277,265,152

2,470,856,448

2,588,775,936

2,638,256,384

2,705,751,040

2,791,345,920

2,824,538,880

2,852,547,328

2,855,087,616

2,834,175,488

Date

Sep. 2010

Sep. 2011

Sep. 2012

Sep. 2013

Sep. 2014

Sep. 2015

Sep. 2016

Sep. 2017

Sep. 2018

Sep. 2019

total

324736

363162

416246

459634

502634

551170

603443

654115

710293

764442

/24

170701

190276

219343

244822

268660

301381

335884

367474

400488

438926

/23

29811

34061

39517

42440

47372

52904

58965

64549

72030

77581

/22

30451

35515

42007

48915

54065

60900

67270

78779

88476

95983

/21

23380

26588

31793

34900

37560

38572

40066

41630

45578

47248

/20

23267

26476

30049

32202

35175

35904

38459

38704

39408

40128

/19

18532

19515

20927

22588

24527

25485

25229

24672

25307

25531

/18

9225

9885

10710

10971

11659

12317

12917

13385

13771

13730

/17

5389

5907

6349

6652

7013

7190

7782

7619

7906

7999

/16

11225

11909

12334

12748

13009

12863

13106

13391

13325

13243

/15

1308

1407

1526

1613

1702

1731

1767

1861

1891

1914

/14

718

794

838

903

983

999

1050

1047

1094

1142

/13

409

457

471

480

500

500

515

552

567

573

/12

198

233

236

250

261

261

267

284

292

288

/11

67

81

84

93

90

96

101

104

99

98

/10

25

27

29

30

30

36

36

36

36

37

/9

10

12

14

11

12

13

13

13

11

11

/8

20

19

19

16

16

18

16

15

14

10

4

Vol. 45Feb.2020

© Internet Initiative Japan Inc.

1. Periodic Observation Report

Next we take a look at IPv6 full-route data (Table 3). The

total number of routes increased by more than it did in the

previous year and now exceeds 70,000. However, route

advertisements for blocks that have been split into smaller

fragments still constitute the majority, with the top three

year-on-year growth rates coming in the /30–/31, /41–/43,

and /45–/47 prefix ranges, sizes that are not all that com-

monly allocated/assigned.

Lastly, let’s also take a look at IPv4/IPv6 full-route Origin

AS figures (Table 4). Both the decrease in 16-bit Origin

Autonomous System Numbers (ASNs) and the increase

in 32-bit-only Origin ASNs were the largest seen in the

past nine years. And for the first time, IPv6-enabled ASNs,

which advertise IPv6 routes, accounted for over a quarter

of the total. It was predicted that RIPE NCC’s IPv4 address

pool would run out before 2020 arrived, so it will be inter-

esting to see what has happened when we next report on

the data.

Topic 2

DNS Query Analysis

IIJ provides a full resolver to enable DNS name resolu-

tion for its users. In this section, we discuss the state of

name resolution, and analyze and reflect upon data from

servers provided mainly for consumer services, based on a

day’s worth of full resolver observational data obtained on

October 25, 2019.

The full resolver starts by looking at the IP address of an

authoritative name server for the root zone (the highest

level zone), and based on the information available from

that server, it then goes through other authoritative name

serves to find the records it needs. Queries repeatedly sent

to the full resolver can result in increased load and delays,

so the information obtained is cached, and when the same

query is received again, the response is sent from the cache.

Recently, DNS-related functions are also implemented on

Table 4: IPv4/IPv6 Full-Route Origin AS Numbers

Table 3: Number of Routes by Prefix Length for Full IPv6 Routes

Sep. 2010

Sep. 2011

Sep. 2012

Sep. 2013

Sep. 2014

Sep. 2015

Sep. 2016

Sep. 2017

Sep. 2018

Sep. 2019

32-bit only（131072-4199999999）16-bit（1-64495）ASN

（ 6.2%）

（11.8%）

（14.3%）

（16.4%）

（17.9%）

（19.5%）

（21.7%）

（23.0%）

（24.5%）

（25.8%）

（IPv6
 -enabled）

34549

37129

39026

40818

42088

42909

42829

42515

42335

42012

total

67

115

125

131

128

137

158

181

176

206

IPv6 only

32399

32756

33434

34108

34555

34544

33555

32731

31960

31164

IPv4 only

2083

4258

5467

6579

7405

8228

9116

9603

10199

10642

IPv4+IPv6

（ 4.0%）

（ 7.5%）

（ 9.9%）

（13.4%）

（16.3%）

（18.1%）

（21.4%）

（21.7%）

（24.0%）

（26.3%）

（IPv6
 -enabled）

498

1381

2846

3914

5672

8303

11943

15800

19561

23631

total

3

13

17

28

55

78

146

207

308

432

IPv6 only

478

1278

2565

3390

4749

6801

9391

12379

14874

17409

IPv4 only

17

90

264

496

868

1424

2406

3214

4379

5790

IPv4+IPv6Advertised
route

Date

Sep. 2010

Sep. 2011

Sep. 2012

Sep. 2013

Sep. 2014

Sep. 2015

Sep. 2016

Sep. 2017

Sep. 2018

Sep. 2019

total

2575

6870

10054

13742

18543

23479

31470

39874

53247

71462

/48

436

2356

3706

5442

7949

10570

14291

18347

24616

34224

/45-/47

17

95

168

266

592

648

1006

1983

2270

4165

/44

4

87

246

474

709

990

1492

1999

4015

4590

/41-/43

9

45

103

119

248

386

371

580

906

1566

/40

2

248

445

660

825

1150

1445

2117

2940

3870

/33-/39

33

406

757

1067

1447

1808

3092

3588

4828

6914

/32

2023

3530

4448

5249

6025

6846

8110

9089

10897

12664

/30-/31

10

22

34

92

133

168

216

256

328

606

/29

3

13

45

256

481

771

1294

1757

2279

2671

/16-/28

38

68

102

117

134

142

153

158

168

192

5

© Internet Initiative Japan Inc.

the same (no major differences) in the middle of the night,

whereas IPv6 queries per IP address show a tendency to rise

when people are active during the daytime and particularly

after 8:00 p.m. This suggests that the computing environ-

ment needed to allow use of IPv6 in the home is coming into

place. And looking at total query count, both the number of

source IPs and the number of actual queries are higher for

IPv6 than for IPv4. The number of IPv6-based queries is on

the rise, accounting for around 60% of the total, up by more

than 4 points from 55% in the previous year.

Recent years have seen a tendency for queries to rise briefly

at certain round-number times, such as on the hour marks

in the morning. The number of query sources also increases,

which tells us that this is possibly due to tasks scheduled

on user devices and increases in automated network access

that occur when devices are activated by, for example, an

alarm clock function. In the previous year, we noted an in-

crease in queries 14 seconds before every hour mark, and

the 2019 results also show another increase 10 seconds be-

fore every hour. The increase in queries that occurs on the

hour tapers off gradually, but with the spikes that occurs

14 and 10 seconds before the hour, query volume immedi-

ately returns to about where it had been. Hence, because a

large number of devices are sending queries in almost per-

fect sync, it seems like some sort of lightweight, quickly

completed tasks are being executed.

devices that lie on route paths, such as broadband routers

and firewalls, and these devices are sometimes involved in

relaying DNS queries and applying control policies.

ISPs notify users of the IP address of full resolvers via various

protocols, including PPP, DHCP, RA, and PCO, depending on

the connection type, and they enable users to automatically

configure which full resolver to use for name resolution on

their devices. ISPs can notify users of multiple full resolvers,

and users can specify which full resolver to use, and add

full resolvers, by altering settings in their OS, browser, or

elsewhere. When more than one full resolver is configured

on a device, which one ends up being used depends on the

device’s implementation or the application, so any given full

resolver is not aware of how many queries a user is sending

in total. When running full resolvers, therefore, this means

that you need to keep track of query trends and always keep

some processing power in reserve.

Observational data on the full resolver provided by IIJ show

fluctuations in user query volume throughout the day, with

volume hitting a daily trough of about 0.05 queries/sec per

source IP address at around 4:30 a.m., and a peak of about

0.23 queries/sec per source IP address at around 12:30 p.m.

These values are almost the same as last year, with a slight

increase in the peak of 0.01 points. Broken down by proto-

col (IPv4 and IPv6), the trends in query volume are virtually

Figure 2: IPv6-based Queries from ClientsFigure 1: IPv4-based Queries from Clients

OTHER 0.4%

PTR 1.26%

AAAA 14.15%

SRV 0.18%

A 84.01%

OTHER 0.13%

PTR 0.21%

AAAA 44.88%

SRV 0.05%

A 54.73%

6

Vol. 45Feb.2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

For example, there are mechanisms for completing basic

tasks, such as connectivity tests or time synchronization, be-

fore bringing a device fully out of sleep mode, and we posit

that the queries used for these tasks are behind the spikes.

Looking at the query record types, most are A records that

query the IPv4 address corresponding to the host name and

AAAA records that query IPv6 addresses. The trends in A

and AAAA queries differ by IP protocol, with more AAAA

record queries being seen for IPv6-based queries. Of IPv4-

based queries, around 84% are A record queries and 14%

AAAA record queries (Figure 1). With IPv6-based queries,

meanwhile, AAAA record queries account for a higher share

of the total, with around 54% being A record and 44%

being AAAA record queries (Figure 2). Compared with the

previous year, the levels are virtually the same for IPv6,

while for IPv4, we observe a drop of 3 percentage points or

so in A record queries and a rise of 3 points or so in AAAA

record queries.

Topic 3

IPv6

In this section, we report on the volume of IPv6 traffic on

the IIJ backbone, the sources of that traffic, and the main

protocols used. And for a new perspective on IPv6 in the

mobile space, we look at the state of IPv6 connections ac-

cording to differences in device OS (Apple iOS / Android).

■ Traffic

As before, we again present IPv4 and IPv6 traffic measured

using IIJ backbone routers at core POPs (points of presence—

Tokyo, Osaka, Nagoya), shown in Figure 3. The data span

the year from October 1, 2018 to September 30, 2019.

Over the year, IPv4 traffic increased by around 8% while

IPv6 traffic rose by around 85%. IPv6 accounts for around

10% of overall traffic (Figure 4), a 4-point increase from

around 6% last year. Further, IPv6 traffic hit a peak of

Figure 4: IPv6 Traffic as a Proportion of Total

Figure 3: IPv4/IPv6 Traffic Measured via IIJ Backbone Routers at Core Points of Presence (Tokyo, Osaka, and Nagoya)

（Date）

Sep
. 3

0,
20

18

Oct.
 31

, 2
01

8

Nov
. 3

0,
20

18

Dec
. 3

1,
20

18

Ja
n.

31
, 2

01
9

Feb
. 2

8,
20

19

Mar.
 31

, 2
01

9

Apr.
 30

, 2
01

9

May
 31

, 2
01

9

Ju
n.

30
, 2

01
9

Ju
l. 3

1,
20

19

Aug
. 1

9,
20

19

Sep
. 3

0,
20

19
0

2

14

12

10

8

6

4

（%）

（Date）

IPv6
IPv4

Linear total (IPv6)
Linear total (IPv4)

Sep
. 3

0,
20

18

Oct.
 31

, 2
01

8

Nov
. 3

0,
20

18

Dec
. 3

1,
20

18

Ja
n.

31
, 2

01
9

Feb
. 2

8,
20

19

Mar.
 31

, 2
01

9

Apr.
 30

, 2
01

9

May
 31

, 2
01

9

Ju
n.

30
, 2

01
9

Ju
l. 3

1,
20

19

Aug
. 1

9,
20

19

Sep
. 3

0,
20

19

7

© Internet Initiative Japan Inc.

around 12% of total, and it continues to increase steadily as

a proportion of overall traffic.

Figure 5 plots the data for the same period on a log scale. It

is evident that IPv6 traffic is growing steadily while growth

in IPv4 traffic is slowing.

■ Traffic Source Organization (BGP AS)

Next, Figures 6 and 7 show the top annual average IPv6 and

IPv4 traffic source organizations (BGP AS Number) for the

year from October 2018 through September 2019.

Company A retains the top spot, but the traffic volume gap

between it and No. 2 downward has narrowed further, and

its share of the pie is only about 60% of what it was last

time. This reflects the increasing use of IPv6 among many

operators as well as an increase in IIJ’s IPv6 traffic due to

IPv6 being enabled on video streaming services that use

JOCDN’s platform (JOCDN is an IIJ affiliate that provides

a video streaming platform).

■ Protocols Used

Figure 8 plots IPv6 traffic according to protocol number

(Next Header) and source port number, and Figure 9 plots

IPv4 traffic according to protocol number and source port

number (for the week starting September 30, 2019).

In the IPv6 space, TCP 80 (HTTP) moved from No. 3 last

time to No. 2, and UUD 443 (QUIC) came in at No. 3. This

mirrors the IPv4 ranking, so we can now say that IPv6

Figure 6: Top Annual Average IPv6 Traffic Source Organizations
(BGP AS Number) from October 2018 to September 2019

Figure 7: Top Annual Average IPv4 Traffic Source Organizations
(BGP AS Number) from October 2018 to September 2019

Figure 5: IPv4/IPv6 Traffic Measured via IIJ Backbone Routers at Core Points of Presence (Tokyo, Osaka, and Nagoya)—Log Scale

Company A

Company B

Company C

Company D

Company E

Company F

Company J

Company H

Company G

IIJ（IPv6）

Company K

Other（IPv6）

Company P

Company O

Company N

Company M

Company L Company I

Company A

Company R

Company S

Company J

Company F

Company Q

Company T

Company U

Company D

Company W

Company V

IIJ

Company C

Other

Company Y

Company X Company O

Company Z

（Date）

IPv6
IPv4

Linear total (IPv6)
Linear total (IPv4)

Sep
. 3

0,
20

18

Oct.
 31

, 2
01

8

Nov
. 3

0,
20

18

Dec
. 3

1,
20

18

Ja
n.

31
, 2

01
9

Feb
. 2

8,
20

19

Mar.
 31

, 2
01

9

Apr.
 30

, 2
01

9

May
 31

, 2
01

9

Ju
n.

30
, 2

01
9

Ju
l. 3

1,
20

19

Aug
. 1

9,
20

19

Sep
. 3

0,
20

19

8

Vol. 45Feb.2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

usage is similar to IPv4 usage or, in other words, that it has

become mainstream.

UDP 4500, which was outside the rankings last time, came

in at No. 5. NAT is basically not used with IPv6, and it is

curious to note that UDP 4500, which is generally for IPSec

NAT traversal, ranks toward the top.

■ IPv6 Across Different Device OSs

Last time, we noted that IPv6 is enabled by default in

Apple iOS from version 11, and that mobile IPv6 traffic

had thus increased.

This time around, we look at mobile device IMEI (International

Mobile Equipment Identity) numbers to facilitate an analysis

of OS type (iOS or Android) and whether the device is

connecting via IPv6 or not (whether an IPv6 address is

assigned).

The analysis covers around 1.07 million mobile phones lines

on a personal mobile service (IIJmio Mobile Service, num-

ber of lines subscribed to as of end-June 2019) that were

connected on a particular weekday in October 2019 (MVNE

lines and business lines are not included).

First, IPv6 was enabled on 48% and disabled on 52% of

connections, a fairly even split, as shown in FIgure 10.

While the connections are split fairly evenly, the traffic is

about 80% IPv4 and 20% IPv6.

Figure 9: Breakdown of IPv4 Traffic by Protocol Number and Source Port Number

Figure 8: Breakdown of IPv6 Traffic by Protocol Number (Next Header) and Source Port Number

UDP40003TCP443

TCP8999

TCP80

TCP873

UDP443

TCP22

ESP

UDP51388

UDP4500

TCP51413

UDP53

TCP54321

IP-ENCAP

TCP995

TCP993

TCP8080

L2TP

ICMPv6

TCP110

Total

S
ep

. 3
0,

 2
01

9,
 0

0:
00

:0
0

S
ep

. 3
0,

 2
01

9,
 0

3:
30

:0
0

S
ep

. 3
0,

 2
01

9,
 0

7:
00

:0
0

S
ep

. 3
0,

 2
01

9,
 1

0:
30

:0
0

S
ep

. 3
0,

 2
01

9,
 1

4:
00

:0
0

S
ep

. 3
0,

 2
01

9,
 1

7:
30

:0
0

S
ep

. 3
0,

 2
01

9,
 2

1:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 0

0:
30

:0
0

O
ct

. 0
1,

 2
01

9,
 0

4:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 0

7:
30

:0
0

O
ct

. 0
1,

 2
01

9,
 1

1:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 1

4:
30

:0
0

O
ct

. 0
1,

 2
01

9,
 1

8:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 2

1:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 0

1:
00

:0
0

O
ct

. 0
2,

 2
01

9,
 0

4:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 0

8:
00

:0
0

O
ct

. 0
2,

 2
01

9,
 1

1:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 1

5:
00

:0
0

O
ct

. 0
2,

 2
01

9,
 1

8:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 2

2:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 0

1:
30

:0
0

O
ct

. 0
3,

 2
01

9,
 0

5:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 0

8:
30

:0
0

O
ct

. 0
3,

 2
01

9,
 1

2:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 1

5:
30

:0
0

O
ct

. 0
3,

 2
01

9,
 1

9:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 2

2:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 0

2:
00

:0
0

O
ct

. 0
4,

 2
01

9,
 0

5:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 0

9:
00

:0
0

O
ct

. 0
4,

 2
01

9,
 1

2:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 1

6:
00

:0
0

O
ct

. 0
4,

 2
01

9,
 1

9:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 2

3:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 0

2:
30

:0
0

O
ct

. 0
5,

 2
01

9,
 0

6:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 0

9:
30

:0
0

O
ct

. 0
5,

 2
01

9,
 1

3:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 1

6:
30

:0
0

O
ct

. 0
5,

 2
01

9,
 2

0:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 2

3:
30

:0
0

O
ct

. 0
6,

 2
01

9,
 0

3:
00

:0
0

O
ct

. 0
6,

 2
01

9,
 0

6:
30

:0
0

O
ct

. 0
6,

 2
01

9,
 1

0:
00

:0
0

O
ct

. 0
6,

 2
01

9,
 1

3:
30

:0
0

O
ct

. 0
6,

 2
01

9,
 1

7:
00

:0
0

O
ct

. 0
6,

 2
01

9,
 2

0:
30

:0
0

O
ct

. 0
7,

 2
01

9,
 0

0:
00

:0
0

TCP993TCP443

TCP110

TCP80

GRE

UDP443

TCP2080

ESP

TCP22

IP-ENCAP

TCP995

TCP8080

TCP8999

UDP4500

TCP44445

UDP12222

UDP8999

TCP1935

TCP182

TCP8000

Total

S
ep

. 3
0,

 2
01

9,
 0

0:
00

:0
0

S
ep

. 3
0,

 2
01

9,
 0

3:
30

:0
0

S
ep

. 3
0,

 2
01

9,
 0

7:
00

:0
0

S
ep

. 3
0,

 2
01

9,
 1

0:
30

:0
0

S
ep

. 3
0,

 2
01

9,
 1

4:
00

:0
0

S
ep

. 3
0,

 2
01

9,
 1

7:
30

:0
0

S
ep

. 3
0,

 2
01

9,
 2

1:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 0

0:
30

:0
0

O
ct

. 0
1,

 2
01

9,
 0

4:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 0

7:
30

:0
0

O
ct

. 0
1,

 2
01

9,
 1

1:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 1

4:
30

:0
0

O
ct

. 0
1,

 2
01

9,
 1

8:
00

:0
0

O
ct

. 0
1,

 2
01

9,
 2

1:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 0

1:
00

:0
0

O
ct

. 0
2,

 2
01

9,
 0

4:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 0

8:
00

:0
0

O
ct

. 0
2,

 2
01

9,
 1

1:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 1

5:
00

:0
0

O
ct

. 0
2,

 2
01

9,
 1

8:
30

:0
0

O
ct

. 0
2,

 2
01

9,
 2

2:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 0

1:
30

:0
0

O
ct

. 0
3,

 2
01

9,
 0

5:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 0

8:
30

:0
0

O
ct

. 0
3,

 2
01

9,
 1

2:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 1

5:
30

:0
0

O
ct

. 0
3,

 2
01

9,
 1

9:
00

:0
0

O
ct

. 0
3,

 2
01

9,
 2

2:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 0

2:
00

:0
0

O
ct

. 0
4,

 2
01

9,
 0

5:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 0

9:
00

:0
0

O
ct

. 0
4,

 2
01

9,
 1

2:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 1

6:
00

:0
0

O
ct

. 0
4,

 2
01

9,
 1

9:
30

:0
0

O
ct

. 0
4,

 2
01

9,
 2

3:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 0

2:
30

:0
0

O
ct

. 0
5,

 2
01

9,
 0

6:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 0

9:
30

:0
0

O
ct

. 0
5,

 2
01

9,
 1

3:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 1

6:
30

:0
0

O
ct

. 0
5,

 2
01

9,
 2

0:
00

:0
0

O
ct

. 0
5,

 2
01

9,
 2

3:
30

:0
0

O
ct

. 0
6,

 2
01

9,
 0

3:
00

:0
0

O
ct

. 0
6,

 2
01

9,
 0

6:
30

:0
0

O
ct

. 0
6,

 2
01

9,
 1

0:
00

:0
0

O
ct

. 0
6,

 2
01

9,
 1

3:
30

:0
0

O
ct

. 0
6,

 2
01

9,
 1

7:
00

:0
0

O
ct

. 0
6,

 2
01

9,
 2

0:
30

:0
0

O
ct

. 0
7,

 2
01

9,
 0

0:
00

:0
0

9

© Internet Initiative Japan Inc.

We first look at which OS the IPv6-enabled devices are using.

As Figure 11 shows, over 80% are on Apple iOS while 14%

are on Android. And next we look at the OS on devices where

IPv6 is disabled. As Figure 12 shows, the proportions here

are inverted, with Android on 82% and iOS on 8%.

Android has supported IPv6 since the release of Android 5

in 2014, much earlier than Apple enabled IPv6 support with

iOS 11, but IPv6 is often disabled by default on Android per

device manufacturer and MNO policies. So from an IPv6

viewpoint, a stark difference has arisen between Android

and iOS, which is exclusively controlled by Apple.

Nonetheless, IPv6 is disabled on some Apple iOS devices;

9.21% of all iOS devices to be precise. We would guess

that these are older devices that do not support iOS 11 or

higher. IPv6 is enabled on 14.08% of all Android devices,

and it appears that many of the recent SIM-lock-free devices

have IPv6 enabled.

■ Summary

In this issue, we examined IPv6 traffic volume and protocols

used, as well as IPv6 connection rates based on mobile de-

vice OS. While IPv4 traffic growth is slowing, IPv6 traffic

exhibited similar levels of growth to last time, indicating that

use of IPv6 continues to advance. Many recently available

home Wi-Fi routers offer support for IPv6 IPoE, and there are

moves to enable IPv6 on video streaming services as well,

so IPv6 traffic looks set to rise even further.

IPv6 is available in the mobile space more than we had imag-

ined, being enabled on almost half of connections. It still only

accounts for around 20% of all traffic, so we hope that ser-

vices continue to provide even more IPv6 support ahead.

Figure 11: OS Breakdown for IPv6-enabled Devices

Figure 10: Proportion of Connections with IPv6 Enabled

Figure 12: OS Breakdown for IPv6-disabled Devices

iOS 83%

Other 　 1%

Android, Not Known 0%

Not Known 0%

Not Known, iOS 2%

Android 14%

Android 82%

Other 　 3%

Windows Phone 1%

Android, Not Known 1%

Not Known 5%

iOS 8%

IPv6 disabled 52%IPv6 enabled 48%

10

Vol. 45Feb.2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

Topic 4

Mobile FLET’S and Natural Disasters

Usually, we would report on changes in the trends in

FLET’S and mobile traffic based on comparable observa-

tions, but virtually the same content was presented in our

periodic observation report in Vol. 44 (https://www.iij.

ad.jp/en/dev/iir/044.html), so here we look at the effects

of natural disasters.

Many natural disasters occurred in 2019. Typhoon Hagibis,

in particular, wrought serious damage across many areas.

On the IIJ backbone, several lines connecting Tokyo and

Osaka experienced lengthy disconnections. A road was

washed away in Nagano Prefecture (between Tokyo and

Osaka), and buried optical fiber cables were physically dam-

aged. The damage spanned a long section of the route, and

the recovery took weeks. Fortunately, IIJ’s backbone net-

work is designed to handle faults caused by events such as

natural disasters like this. The Tokyo–Osaka leg is distrib-

uted among Pacific Ocean, Sea of Japan, and inland routes,

so there was no real impact on user communications.

Meanwhile, Typhoon Hagibis had a clear impact on access

services linked directly users’ use of mobile and FLET’S ser-

vices. Let’s examine this with reference to the data. Note

that FLET’S here refers only to PPPoE.

Figures 13 to 24 graph number of connections and traffic

volume around October 12, 2019, when Hagibis hit Japan’s

main island, along with the corresponding data for a week

earlier around October 5, 2019 for comparison (upload and

download). All of the series have been indexed to a value

of 1 at 12 a.m. on the Fridays (October 4 and 11, 2019).

Figure 14: FLET’S Traffic Volume in the Osaka Area Figure 16: FLET’S Traffic Volume in the Tokyo Area

Figure 13: Number of FLET’S Connections in the Osaka Area Figure 15: Number of FLET’S Connections in the Tokyo Area

11

© Internet Initiative Japan Inc.

First, we focus on the number of connections. Currently, most

FLET’S users have always-on connections via broadband

routers and home gateways, so connection volume remains

fairly constant throughout the day. Indeed, connection vol-

ume changed only slightly during the period in the Osaka

area, which was largely unaffected by Typhoon Hagibis.

However, the number of FLET’S connections in the heavily

impacted Chiba, Fukushima, and Miyagi areas declined over

October 12 and 13, 2019. It dropped sharply in the FLET’S

Chiba area in particular. These areas experienced many

power outages, so the drops were likely due to household

broadband routers and home gateways going offline when

the power dropped out. For mobile, meanwhile, the nature

of MVNO equipment precludes the ability to determine de-

vice location, so we use nationwide totals. The data show

that the number of connections fell over October 12 and

13, 2019. Possible explanations are that MNO equipment

Figure 20: FLET’S Traffic Volume in the Fukushima AreaFigure 18: FLET’S Traffic Volume in the Chiba Area

Figure 19: Number of FLET’S Connections in the Fukushima AreaFigure 17: Number of FLET’S Connections in the Chiba Area

12

Vol. 45Feb.2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

was also damaged or that people refrained from going out

and thus did not use their mobile connection.

Next we look at traffic volume. In Tokyo and areas to the

north, FLET’S traffic volume increased during the daytime

on October 12, 2019, while mobile traffic fell heavily. It

was a weekend, but many people probably stayed indoors

to avoid the storm, using their FLET’S broadband at home

instead of mobile data.

The Internet is now an important part of our infrastruc-

ture alongside electricity, gas, and water, and one that is

all the more valuable during natural disasters. IIJ will con-

tinue to design its backbone with due consideration to the

potential impact of natural disasters and provide Internet

infrastructure that users can rest assured will be available

at all times.

Figure 24: Mobile Traffic VolumeFigure 22: FLET’S Traffic Volume in the Miyagi Area

Figure 23: Number of Mobile ConnectionsFigure 21: Number of FLET’S Connections in the Miyagi Area

13

© Internet Initiative Japan Inc.

Topic 5

The Transition of the Bandwidth
of IIJ Backbone Circuits

In the 2018 edition (Vol. 41) of this report, we noted that

total traffic on IIJ’s backbone had grown more than tenfold

in the past 10 years. Here, we look back on the transition

of IIJ’s backbone, particularly the bandwidth of the back-

bone circuits. IIJ began its ISP operations as a Type 2

Telecommunication Carrier; License for the carrier provid-

ing telecommunication services using facilities or circuits

leased from Type 1 Telecommunication Carriers. So from

the outset, we have leased circuits installed by Type 1

Telecommunication Carriers to build a network and provide

our services. And this situation is unchanged even after the

repeal of the distinction between Type 1 and Type 2 carriers.

We still have the backbone map from 1998. Most of the

circuits’ bandwidth used at that time were 45Mbps (DS-3),

with some being 155Mbps (STM-1). The map shows how

the backbone circuit has changed out from 1998 gradually.

For a time, it was the case that circuits and router interfaces

with quadruple the bandwidth were released roughly every

two years. Bandwidth continued to expand to 600Mbps

(STM-4) in 2000, 2.4Gbps (STM-16) in 2002, and 9.6Gbps

(STM-64) in 2004. It was a happy era in which circuit ca-

pacity expanded as traffic grew. While the circumstances

may have been different for larger ISPs, IIJ was mostly able

to keep up with the growing traffic by upgrading circuits

without significantly changing its network topology.

The following graph, based on the backbone map, plots

total backbone bandwidth between Japan and the US along

with the highest-capacity circuits that were available in the

backbone. The circuit bandwidth steadily increased from

1998 up until when STM-64 rolled out in 2004. But after

2005 through 2014, over 9 years, circuit bandwidth above

Figure 25: Line Capacity and Japan–US Bandwidth

Ju
l. 2

4,
19

98

Apr.
 19

, 2
00

1

Ja
n.

14
, 2

00
4

Oct.
 10

, 2
00

6

Ju
l. 6

, 2
00

9

Apr.
 1,

 20
12

Dec
. 2

7,
20

14

Sep
. 2

2,
20

17

Ju
n.

18
, 2

02
0

（Mbps）

10

100

1000

10000

100000

1000000

（Date）

Highest capacity line
Japan–US route

14

Vol. 45Feb.2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

STM-64 did not become standard. Various factors were be-

hind this. STM-256 was not all that widely adopted, and

technical difficulties associated with 100G, the next step

up, caused development and standardization delays. Yet

traffic continued to grow over this period, eventually reach-

ing the point that we needed bandwidth of 200Gbps or 20

STM-64 circuits between Japan and the US. (Note that the

graph’s y-axis is logarithmic!)

Hence, the design of the IIJ backbone changed considerably

over this period. To change our backbone topology freely,

we adopted the MPLS abstract layer, and to boost circuit

utilization efficiency, we altered the network topology to

make it more amenable to ECMP (Equal Cost Multi-Path).

Things settled somewhat once 100G ethernet became stan-

dard in 2014. IIJ also finished converting core backbone

circuits to 100G in 2018 and is in the process of upgrading

the other network to 100G as traffic grows.

Meanwhile, a sixth 100G circuit between Japan and the US

is in the schedule to go up in December 2019. With five

years having passed since 100G went mainstream, we’re

starting to search for the next step up in capacity. The foot-

steps of 400G are drawing gradually closer.

IIJ will continue to follow the latest technological develop-

ments as it expands our backbone to ensure it remains fast

and efficient with high availability.

1.BGP / Number of Route
Tomohiko Kurahashi

Technology Development Section, Operation Technology Department, Infrastructure Engineering Division, IIJ.

2.DNS Query Analysis
Yoshinobu Matsuzaki

Technology Development Section, Operation Technology Department, Infrastructure Engineering Division, IIJ

3.IPv6
Taisuke Sasaki

Deputy General Manager, Network Technology Department, Infrastructure Engineering Division, IIJ

4.Mobile FLET’S and Natural Disasters
Takafusa Hori

Manager, Network Technology Section, Network Technology Department, Infrastructure Engineering Division, IIJ

5.The Transition of the Bandwidth of IIJ Backbone Circuits
Takanori Sasai

Manager, Backbone Technology Section, Network Technology Department, Infrastructure Engineering Division, IIJ

15

© Internet Initiative Japan Inc.

Acquiring Forensic Memory Images on Linux

*1 Internet Infrastructure Review (IIR) Vol. 32, 1.4.1 Creating Profiles for the Volatility Framework (https://www.iij.ad.jp/en/dev/iir/032.html).

*2 LiME (https://github.com/504ensicsLabs/LiME).

*3 crash (https://people.redhat.com/anderson/).

*4 Velocidex/c-aff4 (https://github.com/Velocidex/c-aff4/releases).

*5 Linux · volatilityfoundation/volatility Wiki (https://github.com/volatilityfoundation/volatility/wiki/Linux#acquiring-memory).

2.1 Linux Memory Dump Toolsn
We use the Volatility Framework when performing memory

analysis for incident response and forensics. In IIR Vol. 32,

“1.4.1 Creating Profiles for the Volatility Framework,” we ex-

plained the procedure for creating a Volatility profile for Linux*1.

Here, we explain how to acquire Linux memory images for

analysis in Volatility. Several tools for acquiring Linux mem-

ory images exist, but here we will look at LiME*2 and crash*3.

We will also describe a memory image acquisition method

that minimizes the impact on disk forensics. Note that this

article assumes your system is running CentOS 7.7-1908.

Another tool for acquiring memory images is Linpmem*4, but

it did not work well in our test environment, so we decided

to leave it out.

Note that in this article we refer to the machine being ex-

amined as the “target host” and the machine on which the

examination is performed as the “examination host”. To

avoid changing data on the target host as much as possible,

compilation of the analysis tools, etc., should be done on a

separate host.

2.2 What is LiME?
LiME is short for Linux Memory Extractor, and is the tool

that Volatility recommends*5 for acquiring memory images.

Since LiME operates as a Linux kernel module, it must be

compiled against the same kernel version as that running on

the target host.

2.3 Compiling LiME
To compile LiME, you first obtain the LiME source code by

running the git command in Figure 1 or by downloading the

zip file from LiME’s GitHub page and extracting it into a

directory. The src subdirectory inside the source code di-

rectory contains a Makefile, so running the make command

from within that subdirectory will generate the LiME module

2. Focused Research

$ git clone https://github.com/504ensicsLabs/LiME.git

$ sudo yum install kernel-devel gcc

$ cd LiME/src

$ make

$ ls

disk.c lime-3.10.0-1062.el7.x86_64.ko lime.o Makefile.sample tcp.o

disk.o lime.h main.c modules.order

hash.c lime.mod.c main.o Module.symvers

hash.o lime.mod.o Makefile tcp.c

Figure 1: Cloning the LiME Git Repository

Figure 2: Compiling the LiME Module Figure 3: Installing the kernel-devel Package

16

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

(see the red outline in Figure 2). Certain packages are re-

quired to compile LiME (kernel-devel, gcc, etc.), so if the

make command produces an error, try installing the corre-

sponding packages as shown in Figure 3.

Note that unless you specify a version at install time, the lat-

est version of the kernel-devel package will be installed. If a

different version of the kernel is running on the target host,

run a search using the yum command, install the appropriate

kernel-devel package version, and then compile the LiME

module, as shown in Figure 4. You need to pass the KVER

option to the make command when doing this.

If the OS version differs, you can generate a LiME module

for that version by downloading the corresponding ker-

nel-devel package separately, extracting it using the cpio

command, and then running make with the KVER and KDIR

options specified, as shown in Figure 5. KVER specifies the

kernel version, and KDIR specifies the directory where the

kernel-devel package was extracted. You also need to install

any other required packages (on our machine, we needed to

install elfutils-libelf-devel). We confirmed that the LiME mod-

ule generated in this manner works on CentOS 8 (1905).

2.4 Dumping Memory to an External Drive
When acquiring memory images, you need to minimize disk

write operations on the target host. In particular, the mem-

ory image is almost always several GB or more is size, so

writing it to the target host’s disk would cause many unused

areas to be overwritten, which could greatly affect forensic

analysis of the disk.

So if you have physical access to the target host, you can

connect a USB stick or mobile SSD containing the LiME mod-

ule to it and load the LiME module into the kernel from there

via the insmod command, as shown in Figure 6. This will

let you acquire a memory image while barely writing any-

thing to the target host’s disk. The double quotes in Figure

$ yum --showduplicates search kernel-devel

$ sudo yum install kernel-devel-3.10.0-1062.1.2.el7.x86_64

$ make KVER=3.10.0-1062.1.2.el7.x86_64

$ curl -OL http://ftp.iij.ad.jp/pub/linux/centos/8.0.1905/BaseOS/x86_64/os/Packages/kernel-devel-4.18.0-80.11.2.el8_0.x86_64.rpm

$ rpm2cpio ./kernel-devel-4.18.0-80.11.2.el8_0.x86_64.rpm | cpio -id

$ sudo yum install elfutils-libelf-devel

$ make KVER=4.18.0-80.11.2.el8_0.x86_64 KDIR=~/src/usr/src/kernels/4.18.0-80.11.2.el8_0.x86_64/

Figure 4: Compiling LiME Against a Specific Kernel Version (1)

Figure 5: Compiling LiME Against a Specific Kernel Version (2)

Figure 6: Loading the LiME Module

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=/media/centos77.mem format=lime"

1717

© Internet Initiative Japan Inc.

6 contain the LiME module options. In this example, a lime

format dump file will be saved to the USB drive mounted at

/media under the filename /media/centos77.mem.

The memory dump starts when the LiME module is loaded,

but the command prompt does not return until the mem-

ory dump is completed. So don’t worry if you’re unable to

enter commands after loading the module; just wait for the

dump to complete. More recent servers, in particular, can be

expected to take a while because of their large memory ca-

pacity. Note that the LiME module remains loaded even after

the memory dump finishes, so unload it using the rmmod

command, as shown in Figure 7.

2.5 Dumping Memory via the Network
If you do not have physical access to the target host as

covered above (for example, if the target host is in a remote

location that makes physical access difficult), or if you don’t

have a large-capacity USB stick, you can combine LiME with

other tools to acquire a memory image via the network. Here,

we show how to combine it with Netcat, NFS, and SSH.

The examination host’s IP address is 192.168.232.131,

and target host’s is 192.168.232.132.

■ Netcat (1)

The LiME module has functionality that enables memory

dumps over the network, and we combine this functional-

ity with the Netcat command to acquire a memory image

via the network. Once the Netcat command is installed on

the examination host, the commands in Figures 8 and 9

will connect the examination host to the port on which the

LiME module is listening (4444/tcp) to acquire the memory

image data.

■ Netcat (2)

The above procedure will result in data equivalent to the

capacity of memory being received. If the target host is a

server, that data may take up several dozen GB or more, so

Figure 10: Command Executed on the Examination Host

Figure 9: Acquiring a Memory Image via the Network Using Netcat
(Examination Host)

Figure 8: Listening on 4444/tcp with LiME (Target Host)

Figure 7: Unloading the LiME Module

Figure 13: NFS Export Settings on the Examination Host (/etc/exports)

Figure 12: Setting the NFS Server (Examination Host)

Figure 11: Commands Executed on the Target Host

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=tcp:4444 format=lime"

$ nc 192.168.232.132 4444 > centos77.mem

$ nc -l 5555 > memorydump.lime.gz

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=tcp:4444 format=lime"

Switch to another login session to execute the following command

$ nc localhost 4444 | gzip -c | nc 192.168.232.131 5555

$ sudo yum install nfs-utils

$ sudo mkdir /mnt/nfsserv/

$ chown -R nfsnobody:nfsnobody /mnt/nfsserv/

$ sudo vi /etc/exports

$ sudo systemctl start nfs.service

$ sudo systemctl status nfs.service

/mnt/nfsserv/ 192.168.232.132(rw,all_squash)

$ lsmod | grep lime

$ sudo rmmod lime

18

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

we want to compress it as much as possible. If Netcat is

also installed on the target host, executing the commands

in Figures 10 and 11 will result in the memory image being

compressed using gzip when it is transferred to the exam-

ination host. As mentioned, the command prompt does not

return when the LiME module is loaded, so the command

following the nc command needs to be run from a separate

login session.

In this example, we first use Netcat on the examination host

to listen on 5555/tcp. Next, we use Netcat on the target

host to connect to 4444/tcp, where the LiME module is lis-

tening, acquire a memory image, compress it using gzip, and

then transfer it to the examination host via Netcat.

■ NFS

If the target host can mount an NFS volume, set up the

examination host on a network that the target host has ac-

cess to. Then export the NFS volume on the examination

host with read/write capability. By copying LiME to this NFS

volume and mounting it as an NFS from the target host, you

can acquire a memory image without creating any files on

the target host (Figures 12, 13, 14, and 15).

■ SSH

If you cannot use Netcat or NFS, you can use SSH instead.

By executing the commands in Figure 16, you can transfer a

memory image to the examination host via SSH. However,

this method can only be used in bash. As with the Netcat (2)

instructions, the exec command onward must be run from a

separate login session.

2.6 What is Crash?
The crash command is a tool for analyzing Linux mem-

ory images. The primary purpose of the tool is to perform

analysis, but a module can also be used to perform mem-

ory dumps. But as there is no RPM package of the crash

memory dump module, we have to compile it from source

Figure 16: Commands Executed on the Target Host

Figure 15: Mounting the NFS and Acquiring a Memory Image (Target Host)

Figure 14: Configuring the Examination Host’s Firewall
and Checking the NFS Export

$ sudo firewall-cmd --permanent --add-service=nfs

$ sudo firewall-cmd --reload

$ sudo exportfs -v

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=tcp:4444 format=lime"

Switch to another login session to execute the following command

$ exec 5<>/dev/tcp/127.0.0.1/4444; cat <&5 | ssh -c user@192.168.232.131 'cat > centos77.mem'

$ sudo mount -t nfs 192.168.232.131:/mnt/nfsserv/ /mnt/

$ sudo insmod /mnt/lime-3.10.0-1062.el7.x86_64.ko "path=/mnt/centos77.mem format=lime"

1919

© Internet Initiative Japan Inc.

*6 The Volatility Foundation - Open Source Memory Forensics (https://www.volatilityfoundation.org/).

*7 Lorenzo Martínez’ tweet (https://twitter.com/lawwait/status/1181469996821700609).

2.7 Analyzing the Memory Image
To analyze a Linux memory image using Volatility*5, you

need a profile corresponding to the Linux kernel version.

As noted at the beginning, the procedure for creating a

Volatility profile is described in IIR Vol. 32*1. Please refer

there if you are unsure.

While we were writing this article, Lorenzo Martínez

opened a Bitbucket repository that automatically gener-

ates and publishes LiME modules and Linux profiles for

Volatility*7. This repository is updated whenever new Linux

kernel packages are released. Note, though, that the OSs

that it automatically generates for are CentOS 5, 6, 7,

8 and Ubuntu 14.04 LTS, 16.04 LTS, 18.04 LTS. You

can find and download the appropriate LiME module and

(Figure 17). The crash command also requires a kernel with

debug symbols, so we install the kernel debugging package

(Figure 18). Next, we copy the three files shown in Figure

19 to the same directory on a USB stick. On the target

host, we execute crash as shown in Figure 20 to acquire a

memory image.

If the kernel version of the target and examination hosts

differ, then search for the appropriate version of the ker-

nel-debuginfo package as demonstrated in Figure 4 (yum

--showduplicates search). Download and extract the pack-

age as shown in FIgure 5 (curl, rpm2cpio, cpio commands),

and copy the vmlinux file. We also recommend using a crash

version that corresponds to your OS version (for example,

crash-7.2.3-18 is provided in CentOS 8.0).

$ sudo yum install crash crash-devel

$ yumdownloader --source crash

$ rpm -ivh crash-7.2.3-10.el7.src.rpm

$ cd rpmbuild/SPECS

$ rpmbuild -bp crash.spec

$ cd ../BUILD/crash-7.2.3

$ make extensions

・/usr/bin/crash

・rpmbuild/BUILD/crash-7.2.3/extensions/snap.so

・/usr/lib/debug/usr/lib/modules/3.10.0-1062.el7.x86_64/vmlinux

$ sudo yum install --enablerepo=base-debuginfo kernel-debuginfo-3.10.0-1062.el7.x86_64

Figure 18: Installing a Kernel with Debug Symbols

Figure 17: Installing the crash Source Package and Compiling the Module Figure 19: Files Required for a Memory Dump

20

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

Volatility profile by filtering the repository webpage by ker-

nel version.

Also, it does not support architectures other than x86_64,

so if you are using a Linux distribution or architecture other

than those covered by the autogenerated files, you will need

to prepare the files yourself. The same applies if you are

using a customized Linux kernel. If using crash, you will also

need your own customized kernel with debug symbols.

2.8 Tips for Acquiring Memory Images
In Linux kernel version 2.4 upward, the tmpfs file system is

available. Data on a tmpfs file system resides only in memory

and is lost if the host is shut down or restarted, so tmpfs is

usually only used for temporary directories and the like with

files one is not concerned about losing. It has been observed,

however, that attackers take advantage of these properties

by using tmpfs as an anti-disk forensics haven for files.

For this reason, Volatility provides the Linux-specific linux_

tmpfs command. This command is used to restore files held

in a tmpfs. Figure 21 illustrates tmpfs files mounted on the

/home/user/tmp directory being restored. The command re-

sults in the file called “tmpfs_example.txt” being restored,

and evidently it contains the string “hello!!”

If available memory is running low, however, the contents

of the tmpfs are swapped out, making it impossible to re-

store the data in the tmpfs via a memory dump (Figure 22).

A potential countermeasure in this case is to temporarily

$ python2 ./vol.py --profile=LinuxCentOS77x64 -f ~/tmpfs_swapoff.mem linux_tmpfs -L

Volatility Foundation Volatility Framework 2.6.1

1 -> /sys/fs/cgroup

2 -> /run

3 -> /home/user/tmp

4 -> /dev/shm

$ python2 ./vol.py --profile=LinuxCentOS77x64 -f ~/tmpfs_swapoff.mem linux_tmpfs -S 3 -D ~/vol_output/

$ hexdump -C ~/vol_output/tmpfs_example.txt

00000000 68 65 6c 6c 6f 21 21 0a |hello!!.|

00000008

$ hexdump -C ~/vol_output/swapout/tmpfs_example.txt

00000000 00 00 00 00 00 00 00 00 |........|

00000008

Move to the directory where the files were copied and then execute these

commands.

$ sudo ./crash ./vmlinux

(Then from within the crash command prompt)

extend ./snap.so

snap centos77.mem

Figure 20: Acquiring a Memory Image Figure 22: Example of a Failure to Restore tmpfs Data due to a Swap-Out

Figure 21: Restoring and Examining the Contents of Files Stored in a tmpfs

2121

© Internet Initiative Japan Inc.

*8 Volatility Labs: Announcing the Volatility 3 Public Beta! (https://volatility-labs.blogspot.com/2019/10/announcing-volatility-3-public-beta.html).

*9 dwarf2json (https://github.com/volatilityfoundation/dwarf2json).

disable the swap. This means forcing data that has been

swapped out to be swapped in. Whether or not this can be

done, however, depends on memory usage on the target

host. If data has been swapped out because of a temporary

increase in memory usage, you may be able to subsequently

disable the swap if memory has since been freed up. This

means a situation like that illustrated in Figure 23, for ex-

ample, where the value of Swap used is lower than free

Mem. Analysis of the memory image acquired after disabling

the swap confirms that the tmpfs data can be restored, as

shown in Figure 24.

This method, however, does overwrite data in unused areas

of memory. Because unused memory areas may still contain

useful data, a better way to perform Linux memory foren-

sics is to dump memory once before disabling the swap and

once again after.

2.9 Volatility 3
Version 2 of Volatility has been in use for a long time, but

during the writing of this article, a public beta version of

Volatility 3 was released*8. Of course we did not check

it with all types of memory images, but in our setup, we

were able to analyze Windows RAW memory images and

CentOS memory images acquired using LiME. A big change

is that the option to specify a profile, which was required in

Volatility 2, is no longer present. Instead, Volatility 3 infers

OS type and version from the memory image being analyzed

and refers to the corresponding symbol table. For exam-

ple, when a Windows memory image is read in, Volatility

3 automatically downloads the PDB file from Microsoft and

analyzes it to construct a symbol table that it can reference.

However, you still need to prepare symbol tables for macOS

and Linux in advance, as in Volatility 2. You can use the

symbol tables provided by the Volatility developers, but the

symbol tables for Linux lack information relative to those

for Windows and macOS, so in most cases, you’ll need to

provide the table yourself.

Symbol tables are created using a tool called dwarf2json*9.

As dwarf2json is written in Go, we first install the golang

package and then build dwarf2json. We also install the ker-

nel-debuginfo package because we need a Linux kernel with

symbols. Executing dwarf2json with a Linux kernel with

$ sudo yum install epel-release

$ sudo yum install golang

$ git clone https://github.com/volatilityfoundation/dwarf2json.git

$ cd dwarf2json

$ go build

$ sudo yum install --enablerepo=base-debuginfo kernel-debuginfo-3.10.0-1062.1.2.el7.x86_64

$./dwarf2json linux --elf /usr/lib/debug/usr/lib/modules/3.10.0-1062.1.2.el7.x86_64/vmlinux > centos77-3.10.0-1062.1.2.el7.x86_64.json

$ xz -z centos77-3.10.0-1062.1.2.el7.x86_64.json

$ wget https://downloads.volatilityfoundation.org/volatility3/symbols/linux.zip

$ zip ./linux.zip ./centos77-3.10.0-1062.1.2.el7.x86_64.json.xz

$ free

 total used free shared buff/cache available

Mem: 1863248 75920 307192 768 1480136 1591860

Swap: 2097148 56776 2040372

$ sudo swapoff -a

$ free

 total used free shared buff/cache available

Mem: 1863248 118804 247652 9800 1496792 1539936

Swap: 0 0 0

(After dumping memory, reenable the swap)

$ sudo swapon -a

$ hexdump -C ~/vol_output/swapoff/tmpfs_example.txt

00000000 68 65 6c 6c 6f 21 21 0a |hello!!.|

00000008

Figure 25: Building dwarf2json and Generating a Symbol Table

Figure 23: Checking Memory Usage, and Disabling and Enabling the Swap
Figure 24: tmpfs Data Restored from a Memory Image

After Disabling the Swap

22

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

Minoru Kobayashi

Forensic Investigator, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Kobayashi is a member of IIJ-SECT, mainly dealing with digital forensics. He works to improve incident response capabilities and in-
house technical capabilities.
He gives lectures and training sessions at security events both in Japan and abroad, including Black Hat, FIRST TC, JSAC, and Security
Camp events.

$ cd ..

$ sudo yum install python3

$ git clone https://github.com/volatilityfoundation/volatility3.git

$ pip3 install --user pefile yara-python capstone

$ cp ./dwarf2json/linux.zip ./volatility3/volatility/symbols/

$ cd volatility3

$ python3 vol.py -f ~/centos77.mem linux.pstree.PsTree

Volatility 3 Framework 1.0.0-beta.1

Progress: 23.13 Scanning LimeLayer using RegExScanner

PID PPID COMM

1 0 systemd

* 833 1 login

** 1695 833 bash

* 841 1 firewalld

* 843 1 NetworkManager

** 992 843 dhclient

* 558 1 systemd-journal

* 593 1 systemd-udevd

* 818 1 dbus-daemon

* 1171 1 sshd

** 1720 1171 sshd

*** 1724 1720 sshd

**** 1725 1724 bash

***** 1751 1725 sudo

****** 1753 1751 insmod

* 1172 1 tuned

* 821 1 systemd-logind

* 822 1 irqbalance

* 823 1 polkitd

* 1174 1 rsyslogd

* 1397 1 master

** 1402 1397 pickup

** 1405 1397 qmgr

(Subsequent output omitted)

symbols specified will generate a symbol table, so we add

this to the file (linux.zip) that contains the symbol table dis-

tributed by the developers. See Figure 25 for the specific

commands. Copy the generated symbol table to the speci-

fied Volatility 3 subdirectory (Figure 26).

Volatility 3 is executed using this command line format: “py-

thon3 vol.py -f <memory image file> <plugin>”. Figure 27

shows the results of analyzing a CentOS 7.7 memory image

using the pstree plugin. The format has changed slightly from

that of Volatility 2, with the * character now used to denote

process nesting. The method for specifying the plugin to be

executed has also changed. For the pstree plugin, you specify

“linux_pstree” in Volatility 2, but in Volatility 3, you specify

“linux.pstree.PsTree”. A list of available plugins can be found

by running “python3 vol.py -h”.

While we did get it to work properly, we also identified

some bugs. As noted above, OS type and version are in-

ferred from the contents of the memory image specified on

the command line, but it can fail to recognize the correct

Linux kernel version with some memory images, causing the

analysis to fail. And with Windows memory images, some-

times analysis of the downloaded PDB fails, preventing you

from advancing to the memory image analysis stage of the

process.

The Volatility development team has announced an official

Volatility 3 version will be released in August 2020. Support

for Volatility 2 will continue for one year after that through

August 2021, but with Volatility 3 set to become main-

stream ahead, it’s probably a good idea to get accustomed

to the new usage and configuration methods before the of-

ficial release hits.

Figure 26: Installing Volatility 3 and Copying the Symbol Tables Figure 27: Running the pstree Plugin on a Linux Memory Image

2323

©Internet Initiative Japan Inc. All rights reserved.
 IIJ-MKTG020-0043

Internet Initiative Japan Inc.

Address: Iidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, Japan
Email: info@iij.ad.jp URL: https://www.iij.ad.jp/en/

Fe
br

ua
ry

 2
02

0
Vo

l.4
5

About Internet Initiative Japan Inc. (IIJ)

IIJ was established in 1992, mainly by a group of engineers who
had been involved in research and development activities related
to the Internet, under the concept of promoting the widespread
use of the Internet in Japan.
IIJ currently operates one of the largest Internet backbones
in Japan, manages Internet infrastructures, and provides
comprehensive high-quality system environments (including
Internet access, systems integration, and outsourcing services,
etc.) to high-end business users including the government and
other public offices and financial institutions.
In addition, IIJ actively shares knowledge accumulated through
service development and Internet backbone operation, and
is making efforts to expand the Internet used as a social
infrastructure.

The copyright of this document remains in Internet Initiative Japan Inc.

(“IIJ”) and the document is protected under the Copyright Law of Japan

and treaty provisions. You are prohibited to reproduce, modify, or make

the public transmission of or otherwise whole or a part of this document

without IIJ’s prior written permission. Although the content of this

document is paid careful attention to, IIJ does not warrant the accuracy and

usefulness of the information in this document.

	Executive Summary
	1.	Periodic Observation Report
	Topic 1 BGP / Number of Routes
	Topic 2 DNS Query Analysis
	Topic 3 IPv6
	Topic 4 Mobile FLET’S and Natural Disasters
	Topic 5 The Transition of the Bandwidth of IIJ Backbone Circuits

	2.	Focused Research
	2.1	Linux Memory Dump Toolsn
	2.2	What is LiME?
	2.3	Compiling LiME
	2.4	Dumping Memory to an External Drive
	2.5	Dumping Memory via the Network
	2.6	What is Crash?
	2.7	Analyzing the Memory Image
	2.8	Tips for Acquiring Memory Images
	2.9	Volatility 3

