
Vol. 52
Internet
Infrastructure
Review

Nov.2021

Periodic Observation Report

Broadband Traffic Report:
COVID-19’s Impact in its 2nd Year

Focused Research (1)

Verifiable Credentials and BBS+ Signatures

Focused Research (2)

Implementing QUIC in Haskell

Internet Infrastructure Review
November 2021 Vol.52

© Internet Initiative Japan Inc.

Executive Summary . 3

1. Periodic Observation Report . 4

1.1 Overview . 4

1.2 About the Data . 6

1.3 Users’ Daily Usage . 6

1.4 Usage by Port . 9

1.5 Conclusion . 11

2. Focused Research (1) . 12

2.1 Introduction . 12

2.2 Credentials and Verifiable Credentials . 12

2.3 Illustration of Verifiable Credentials in Use . 13

2.4 The Verifiable Credentials Ecosystem . 14

2.5 How Verifiable Credentials and Traditional Digital Certificates Differ . 15

2.6 Developments in Verifiable Credentials . 16

2.7 Verifiable Credentials Implementations . 17

2.8 The Future of Verifiable Credentials . 18

2.9 Conclusion . 19

3. Focused Research (2) . 20

3.1 QUIC and HTTP/3 . 20

3.2 Why Implement it in Haskell? . 20

3.3 QUIC Streams and Connections . 21

3.4 Accepting Connections on a Server . 21

3.5 Threads that Make up a Connection . 22

3.6 Connected Sockets . 23

3.7 Closing Connections . 24

3.8 TLS Handshake . 24

3.9 Migration . 25

3.10 ACK Processing Algorithmn . 27

3.11 Reassembling Streams . 28

3.12 Flow Control . 28

3.13 Loss Detection and Congestion Control . 28

3.14 Testing . 29

3.15 Acknowledgments . 29

2

© Internet Initiative Japan Inc. 3

Vol. 52Nov.2021

Executive Summary

In September 2021, the Japanese government launched its new Digital Agency. The Digital Agency’s website*1 says that
it will rapidly build Japan’s public-private infrastructure over the next five years to create a society in which the benefits
of digitalization reach everyone. The agency’s organizational chart also bears out its keen focus on digitalizing public
services as well as the services of government ministries and agencies.

We might not give too much thought to government services until our own time comes to use them, and indeed, when I
moved a few years ago, I was at times struck by the sheer amount of paperwork I had to complete and how inconvenient
it all was. And amid the current COVID-19 pandemic, the popular press has been critical of the government, claiming that
the payment of government handouts and the rollout of vaccines could have proceeded more smoothly if greater progress
had been made on the use of information & communication technology (ICT) in government services.

How does the Japanese government’s use of ICT stack up against the rest of the world? The United Nations’ global
e-government rankings*2, released in July 2020, put Japan in 14th place out of the 193 UN Member States, while the
“International Digital Government Rankings”*3 released by the Institute of Digital Government at Waseda University
in September 2020 have Japan in seventh place out of 64 leading ICT nations. No doubt it depends on the evaluation
methodology, but it seems fair to say that while the Japanese government does not have a commanding lead over the
rest of the world when it comes to digitalization, it is not as far behind as public criticism might suggest.

That said, promoting the use of ICT and pursuing digital transformation initiatives across society as a whole will be key to
improving the lives of all. The Internet is crucial infrastructure for making this happen, and at IIJ, we hope to contribute
toward such digital transformation efforts through our role in supporting the Internet.

The IIR introduces the wide range of technology that IIJ researches and develops, comprising periodic observation reports
that provide an outline of various data IIJ obtains through the daily operation of services, as well as focused research
examining specific areas of technology.

Our periodic observation report in Chapter 1 provides our analysis of IIJ’s fixed broadband and mobile traffic. We are
now in the second year marked by major changes in Internet traffic due to the COVID-19 pandemic. The results of
this analysis elucidate how changes in Internet traffic reflect societal developments and changes in technology, including
the impact of behavioral restrictions on traffic, the shift from PPPoE to IPoE in fixed broadband, the shift from HTTP to
HTTPS, and the rise of the QUIC protocol, as also discussed in Chapter 3.

The first focused research report, in Chapter 2, looks at Verifiable Credentials (VCs), which lie at the core of self-sovereign
identity (SSI), and discusses BBS+ signatures, which make VCs possible. As digital transformation initiatives advance, SII
is likely to become increasingly important as it allows users to independently manage their own digital identities. We also
discussed SSI in IIR Vol. 43 (https://www.iij.ad.jp/en/dev/iir/043.html), and the development of technologies to enable SSI
has progressed in the two years since then. The report in Chapter 2 also touches on the differences between traditional
digital certificates and VCs, VC implementations from Japan and abroad, standardization, and future challenges.

The second focused research report, in Chapter 3, discusses an effort to implement QUIC, which was recently standardized
in RFC 9000, in Haskell. As well as participating in the discussion of new protocols, the author actually implements them
and tests interoperability with other implementations, putting a lot of effort into ensuring a high level of completeness
when it comes time to use those implementations. Many implementations use event-driven programming, but by taking
advantage of Haskell’s features and adopting a threaded programming approach, the author has been able to test the
specifications from a different perspective than other implementers. The specific implementation points covered in this
chapter help to provide a deeper understanding of the QUIC protocol.

Through activities such as these, IIJ strives to improve and develop its services on a daily basis while maintaining the
stability of the Internet. We will continue to provide a variety of services and solutions that our customers can take full
advantage of as infrastructure for their corporate activities.

*1 Digital Agency, “What is the Digital Agency?” (https://www.digital.go.jp/en).

*2 Department of Economic and Social Affairs, United Nations, “UN E-Government Survey 2020” (https://publicadministration.un.org/

egovkb/en-us/Reports/UN-E-Government-Survey-2020).

*3 Institute of Digital Government at Waseda University, “International Digital Government Rankings” (https://idg-waseda.jp/ranking.htm).

Junichi Shimagami

Mr. Shimagami is a Managing Director and the CTO of IIJ. His interest in the Internet led to him joining IIJ in September
1996. After engaging in the design and construction of the A-Bone Asia region network spearheaded by IIJ, as well
as IIJ’s backbone network, he was put in charge of IIJ network services. Since 2015, he has been responsible for
network, cloud, and security technology across the board as CTO. In April 2017, he became chairman of the Telecom
Services Association of Japan MVNO Council.

Executive Summary

© Internet Initiative Japan Inc.

*1 Kenjiro Cho. Broadband Traffic Report: The Impact of COVID-19. Vol.48. pp4-9. September 2020.

*2 Kenjiro Cho. Broadband Traffic Report: Moderate Growth in Traffic Volume Ongoing. Vol. 44. pp4-9. September 2019.

*3 Kenjiro Cho. Broadband Traffic Report: Download Growth Slows for a Second Year Running. Vol. 40. pp4-9. September 2018.

*4 Kenjiro Cho. Broadband Traffic Report: Traffic Growth Slows to a Degree. Internet Infrastructure Review. Vol. 36. pp4-9. September 2017.

*5 Akimichi Ogawa and Satoshi Kubota. Tettei Kaisetsu v6 Plus. Lambda Note. January 2020 (https://www.jpne.co.jp/books/v6plus/, in Japanese).

1. Periodic Observation Report

Broadband Traffic Report:
COVID-19’s Impact in its 2nd Year

1.1 Overview
In this report, we analyze traffic over the broadband

access services operated by IIJ and present the results

each year*1*2*3*4. Here, we again report on changes in traffic

trends over the past year, based on daily user traffic and

usage by port.

As in 2020, home Internet usage again increased under

the COVID-19 pandemic, with broadband traffic staying

in an uptrend. Meanwhile, with people venturing outdoors

less, mobile usage has been largely range-bound.

Figure 1 graphs the overall average monthly traffic trends

for IIJ’s fixed broadband services and mobile services. IN/

OUT indicates the direction from the ISP perspective. IN

represents uploads from users, and OUT represents user

downloads. Because we cannot disclose specific traffic

numbers, we have normalized the data, setting the OUT

observations for January 2020 for both services to 1.

Broadband services traffic surged from March to May 2020,

when COVID-19 cases were starting to ramp up in Japan.

It fell slightly in June after Japan’s state of emergency was

lifted but turned up again from August. Over the past year,

broadband IN traffic increased 20% and OUT traffic

increased 23%. While these are smaller increases than

the year-earlier figures of 43% and 34%, the growth

rates do appear to have returned to their former levels.

Mobile services traffic, meanwhile, remained range-bound

overall during this period amid lower rates of use outside

the home/office, despite an increase in the use of services

for remote work. Over the past year, mobile IN traffic

increased 39% and OUT traffic fell 1%. A year earlier, IN

was up 28% and OUT down 7%.

The broadband figures include IPv6 IPoE traffic. IPv6

traffic on IIJ’s broadband services comprises both IPoE

and PPPoE traffic*5. As of June 2021, IPoE accounted for

almost a third of all traffic, at 31% of IN and 30% of

OUT broadband traffic overall, year-on-year increases of

7 and 10 percentage points, respectively. With PPPoE

congestion having become quite noticeable amid COVID-

19, users are increasingly shifting to IPoE, and use of IPoE

thus continues to rise.

Figure 1: Monthly Broadband and Mobile Traffic

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

2015 2016 2017 2018 2019 2020 2021

Tr
af

fic
 v

ol
um

e

Month/Year

IN(broadband)

OUT(broadband)

IN(PPPoE Only)

OUT(PPPoE Only)

IN(mobile)

OUT(mobile)

4

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

1. Periodic Observation Report

Figure 3: Hourly Average Broadband Traffic on Weekends

Figure 2: Hourly Average Broadband Traffic on Weekdays

We now look at broadband traffic by time of day on weekdays

and weekends amid COVID-19. Traffic volume here is the

sum of PPPoE and IPoE. Figures 2 and 3 show traffic for

the following seven weeks: the week of February 25, 2020,

before Japan’s school closures; the week of April 20,

2020, corresponding to Japan’s first state of emergency;

the week of June 22, 2020, after the state of emergency

was lifted; the week of August 31, 2020, when the second

COVID-19 wave was easing; the week of January 18, 2021,

the second state of emergency; the week of March 22,

2021, after Tokyo’s state of emergency was lifted; and the

week of July 5, which marked the start of the fifth wave

of COVID-19, involving variant strains. We graph hourly

average traffic volume figures for each of these weeks,

partitioned into weekdays (Monday–Friday, excluding public

holidays) and weekends (Saturday/Sunday). The lines in

the lower part of each plot represent uploads, but here we

focus on download volume.

First, we look at weekday traffic. Comparing February and

April 2020 to see the impact of the first state of emergency,

we see that traffic was up substantially in the daytime and

that it also increased during evening peak hours. When the

state of emergency was lifted in June, the additional daytime

traffic fell to less than half what it had been, but peak hours

saw almost no decline. Daytime traffic subsequently edged

upward but did not return to its April 2020 levels until March

of this year. Daytime traffic fell a little in July, which seems

to reflect that schools were in session and remote work had

declined a bit. Focusing on the 20:00–22:00 peak hours,

we see a fairly consistent increase.

Weekend traffic, meanwhile, shows less variability

than weekdays. Weather has a greater impact than school

or remote work on the proportion of people at home on

weekends. For example, poor weather on January 23 and

24 this year pushed home Internet usage upward; and on

March 27 and 28, the cherry blossoms were in full bloom

west of the Kanto region, resulting in more people going

out and thus lower traffic levels. Traffic during nighttime

peak hours is roughly the same as on weekdays.

0
0:00 6:00 12:00 18:00

Jul. 5–9, 2021
Mar. 22–26, 2021
Jan. 18–22, 2021
Aug. 31 – Sep. 4, 2020
Jun. 22–26, 2020
Apr. 20–24, 2020
Feb. 25–28, 2020

0
0:00 6:00 12:00 18:00

Jul. 10–11, 2021
Mar. 27–28, 2021
Jan. 23–24, 2021
Sep. 5–6, 2020
Jun. 27–28, 2020
Apr. 25–26, 2020
Feb. 29 – Mar. 1, 2020

5

© Internet Initiative Japan Inc.

We estimated overall usage volumes by multiplying

observed volumes with the reciprocal of the sampling rate.

IIJ provides both fiber-optic and DSL broadband services,

but fiber-optic access now accounts for the vast majority of

use. Of users observed in 2021, 99% were using fiber-optic

connections.

1.3 Users’ Daily Usage
First, we examine daily usage volumes for broadband and

mobile users from several angles. Daily usage indicates the

average daily usage calculated from a week’s worth of data

for each user.

Since our 2019 report, we use daily usage data only on

services provided to individuals. The distribution is heavily

distorted if we include enterprise services, where usage

patterns are highly varied. So to form a picture of overall

usage trends, we determined that using only the individual

data would yield more generally applicable, easily interpretable

conclusions. Note that the analysis of usage by port in the

next section does include enterprise data because of the

difficulty of distinguishing between individual and enterprise

usage.

Figures 4 and 5 show the average daily usage distributions

(probability density functions) for broadband and mobile users.

Each compares data for 2020 and 2021 split into IN (upload)

and OUT (download), with user traffic volume plotted along

the X-axis and user frequency along the Y-axis. The X-axis

Note that IPoE traffic is not included in the following analysis,

as detailed data is not available because we use Internet

Multifeed Co.’s transix service for IPoE.

1.2 About the Data
As with previous reports, for broadband traffic, our analysis

uses data sampled using Sampled NetFlow from the routers

that accommodate the fiber-optic and DSL broadband

customers of our personal and enterprise broadband access

services. For mobile traffic, we use access gateway billing

information to determine usage volumes for personal and

enterprise mobile services, and we use Sampled NetFlow

data from the routers used to accommodate these services

to determine the ports used.

Because traffic trends differ between weekdays and

weekends, we analyze traffic in one-week chunks. In this

report, we look at data for the week of May 31 – June

6, 2021, and compare those data with data for the week

of June 1–7, 2020, which we analyzed in the previous

edition of this report.

Results are aggregated by subscription for broadband

traffic, and by phone number for mobile traffic as some

subscriptions cover multiple phone numbers. The usage

volume for each broadband user was obtained by matching

the IP address assigned to users with the IP addresses

observed. We gathered statistical information by sampling

packets using NetFlow. The sampling rate was set to around

1/8,192, taking into account router performance and load.

Figure 5: Daily Mobile User Traffic Volume Distribution
Comparison of 2020 and 2021

Figure 4: Daily Broadband User Traffic Volume Distribution
Comparison of 2020 and 2021

P
ro

ba
bi

lit
y

D
en

si
ty

Users' Daily Traffic Volume (Bytes)

0

0.2

0.4

0.6
2020(IN)

2021(IN)
2020(OUT)

2021(OUT)

10
(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11
0
10

(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

0.2

0.4

0.6

Mobile(2021) 2020（IN）

2021（IN）
2020（OUT）

2021（OUT）

P
ro

ba
bi

lit
y

D
en

si
ty

Users' Daily Traffic Volume (Bytes)

6

Vol. 52Nov.2021

1. Periodic Observation Report

© Internet Initiative Japan Inc.

shows volumes between 10KB (104) and 100GB (1011) using

a logarithmic scale. Most users fall within the 100GB (1011)

range, with a few exceptions.

The IN and OUT broadband traffic distributions are close to

a log-normal distribution, which looks like a normal distribution

on a semi-log plot. A linear plot would show a long-tailed

distribution, with the peak close to the left and a slow

gradual decrease toward the right. The OUT distribution

is further to the right than the IN distribution, indicating

that download volume is more than an order of magnitude

larger than upload volume. The peaks of both the IN and

OUT distributions for 2021 are further to the right than

the peaks of the 2020 distributions, indicating that overall

user traffic volumes are increasing. Compared with what

we have seen in the past, there is almost no change in the

distributions this time around, which is also evident from

the lack of growth in total PPPoE traffic.

The peak of the OUT distribution, which appears toward

the right in the plot, has been steadily moving rightward

over the past few years, but heavy-user usage levels have

not increased much, and as a result, the distribution is

becoming less symmetric. The IN distribution on the left,

meanwhile, is generally symmetric and closer to a log-normal

distribution.

Similarly, the peaks of the mobile distributions in Figure 5

have moved slightly to the right, indicating that overall

traffic has increased, albeit only slightly. Mobile usage

volumes are significantly lower than for broadband, and

limits on mobile data usage mean that heavy users, which

fall on the right-hand side of the distribution, account for

only a small proportion of the total, so the distribution is

asymmetric. There are also no extremely heavy users. The

variability in each user’s daily usage volume is higher for

mobile than for broadband owing to there being users who

only use mobile data when out of the home/office as well

as limits on mobile data. Hence, the daily average for a

week’s worth of data shows less variability between users

than the data for individual days. Plotting the distributions

for individual days in the same way results in slightly lower

peaks and correspondingly higher tails on both sides, but

the basic shape and modal values of the distribution remain

largely unchanged.

Table 1 shows trends in the mean and median daily traffic

values for broadband users as well as the mode (the most

frequent value, which represents the peak of the distribution).

When the peak is slightly off the center of the distribu-

tion, the distribution is adjusted to bring the mode toward

the center. All of the values increased this time around.

Comparing 2020 and 2021, the IN mode rose from 158MB

Table 1: Trends in Mean and Mode
of Broadband Users’ Daily Traffic Volume

IN(MB/day) OUT(MB/day)

Year Mean Median MedianMode Mean Mode

2015

2016

2007

2008

2009

2010

2011

2012

2013

2014

2017

2018

2019

2020

2021

351

361

436

490

561

442

398

320

348

364

391

428

479

609

684

45

63

5

6

6

7

9

16

28

13

79

79

89

158

200

32

48

5

6

6

7

9

13

21

11

63

66

75

122

136

1399

1808

718

807

973

878

931

928

1124

945

2285

2664

2986

3810

4225

708

1000

56

79

100

126

200

355

501

251

1259

1585

1995

3162

3981

443

726

59

75

91

111

144

208

311

900

1083

1187

1638

1875

176

7

© Internet Initiative Japan Inc.

to 200MB and the OUT mode rose from 3,162MB to

3,981MB, translating into growth factors of 1.3 for both

IN and OUT.

Meanwhile, because the means are influenced by heavy

users (on the right-hand side of the distribution), they are

significantly higher than the corresponding modes, with

the IN mean at 684MB and the OUT mean at 4,225MB

in 2021. The 2020 means were 609MB and 3,810MB,

respectively.

For mobile traffic, the mean and mode are close owing to

the lack of heavy users. As Table 2 shows, the IN mean

has fallen slightly while all other values are up. In 2021,

the IN mode was 8MB and the OUT mode was 71MB,

while the means were IN 10MB and OUT 86MB. The 2020

modes were IN 7MB and OUT 63MB, and the means were

IN 10MB and OUT 79MB.

Figures 6 and 7 plot per-user IN/OUT usage volumes for

random samples of 5,000 users. The X-axis shows OUT

(download volume) and the Y-axis shows IN (upload volume),

with both using a logarithmic scale. Users with identical

IN/OUT values fall on the diagonal.

The cluster spread out below and parallel to the diagonal

in each of these plots represents typical users with download

volumes an order of magnitude higher than upload volumes.

For broadband traffic, there was previously a clearly

recognizable cluster of heavy users spread out thinly about

the upper right of the diagonal, but this is now no longer

discernible. Variability between users in terms of usage

levels and IN/OUT ratios is wide, indicating that there is

a diverse range of usage styles. For mobile traffic, the

pattern of OUT being an order of magnitude larger also

applies, but usage volumes are lower than for broadband,

and there is less variability between IN and OUT. For both

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Userʼs Daily Download Volume (Bytes)

U
se

rʼs
 D

ai
ly

 U
pl

oa
d

V
ol

um
e

(B
yt

es
)

10
(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

Total(2021)

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Mobile(2021)

User’ s Daily Download Volume (Bytes)

U
se

r’
s

D
ai

ly
 U

pl
oa

d
V

ol
um

e
(B

yt
es

)

10
(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

IN(MB/day) OUT(MB/day)

Year Mean Mode Mean MedianMedian Mode

2015 3.2 49.2 44.723.5

2016

4.5

2017 4.9 79.9 79.441.27.9

7.14.1 66.5 63.132.7

2018 8.95.4 83.8 79.444.3

2019 8.95.9 84.9 79.446.4

2020 7.14.5 79.4 63.135.1

2021

6.2

7.6

9.3

10.5

11.2

10.4

9.9 7.94.7 85.9 70.837.9

Table 2: Trends in Mean and Mode
of Mobile Users’ Daily Traffic Volume

Figure 6: IN/OUT Usage for Each Broadband User Figure 7: IN/OUT Usage for Each Mobile User

8

Vol. 52Nov.2021

1. Periodic Observation Report

© Internet Initiative Japan Inc.

broadband and mobile, there is almost no difference between

these plots and those for 2020.

Figures 8 and 9 show the complementary cumulative

distribution of users’ daily traffic volume. On these log-log

plots, the Y-axis values represent the proportion of users

with daily usage levels greater than the corresponding

X-axis values. These plots are an effective way of examining

the distribution of heavy users. The linear-like decline

toward the right-hand side of the plots indicates that the

distributions are long-tailed and close to a power-law

distribution. Heavy users appear to be distributed

statistically and do not appear to constitute a separate,

special class of user.

The broadband distributions are largely unchanged from

last year. But on mobile, the bump observed at the bottom

right of the IN distribution last year due to a heavy volume

of uploads has disappeared, and the slope is now fairly

linear.

Traffic is heavily skewed across users, such that a small

proportion of users accounts for the majority of overall

traffic volume. For example, the top 10% of broadband

users account for 48% of total OUT and 76% of total IN

traffic, while the top 1% of users account for 15% of OUT

and 50% of IN traffic. The skew has not changed much

from last year. As for mobile, the top 10% of users account

for 48% of OUT and 49% of IN traffic, while the top 1%

account for 12% of OUT and 16% of IN traffic. The skew

here is also mostly unchanged from last year’s report.

1.4 Usage by Port
Next, we look at a breakdown of traffic and examine usage

levels by port. Recently, it has become difficult to identify

applications by port number. Many P2P applications use

dynamic ports on both ends, and a large number of client/

server applications use port 80, which is assigned to

HTTP, to avoid firewalls. Hence, generally speaking, when

both parties are using a dynamic port numbered 1024 or

higher, the traffic is likely to be from a P2P application, and

when one of the parties is using a well-known port lower

than 1024, the traffic is likely to be from a client/server

application. In light of this, we take the lower of the source

and destination port numbers when breaking down TCP

and UDP usage volumes by port.

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

In
Out

10
-6

10
-5

10
-3

10
-1

10
-4

10
-2

10 0

Users’ Daily Traffic Volume (Bytes)

10
(100KB)

510
(10KB)

4 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11 10
(1TB)

12

Total（2021）

In
Out

Mobile(2021)

10
-6

10
-5

10
-3

10
-1

10
-4

10
-2

10 0

P
ro

ba
bi

lit
y

D
is

tri
bu

tio
n

Users’ Daily Traffic Volume (Bytes)

10
(100KB)

510
(10KB)

4 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11 10
(1TB)

12

Figure 8: Complementary Cumulative Distribution
of Broadband Users’ Daily Traffic Volume

Figure 9: Complementary Cumulative Distribution
of Mobile Users’ Daily Traffic Volume

9

© Internet Initiative Japan Inc.

Table 3 shows the percentage breakdown of broadband

users’ usage by port over the past five years. In 2021, 72%

of all traffic was over TCP connections, down 5 percentage

points vs. 2020. The proportion of traffic over port 443

(HTTPS) was 54%, a 2-point increase from last year. The

proportion of traffic over port 80 (HTTP) fell from 17% to

12%. The figure for UDP port 443, which is used by the

QUIC protocol, rose from 11% to 16%, so HTTP declined

by roughly the amount that QUIC increased.

TCP dynamic port traffic, which has been in decline, fell

to 6% in 2021. Individual dynamic port numbers account

for only a tiny portion, with the most commonly used port

31000 only making up 0.6%. Port 1935, which is used by

Flash Player, makes up 0.2%, but almost all other traffic

is VPN related.

Table 4 shows the percentage breakdown by port for

mobile users. The figures are close to those for broadband

on the whole. This is likely because apps similar to those

for PC platforms are now also used on smartphones, and

because the proportion of broadband usage on smartphones

is rising.

Figure 10 compares overall broadband traffic for key port

categories across the course of the week from which

observations were drawn in 2020 and 2021. We break

the data into four port buckets: TCP ports 80 and 443,

dynamic ports (1024 and up), and UDP port 443.

The data are normalized so that peak overall traffic

volume on the plot is 1. Comparing 2020 and 2021, we

see that UDP port 443 has become more prominent than

TCP port 80 in 2021. The increase in weekday daytime

traffic observed in 2020 is down a little. The overall peak

is between 19:00 and 23:00.

Figure 11 shows the trend for TCP ports 80 and 443 and

UDP port 443, which account for the bulk of mobile traffic.

protocol　port

year

TCP

　(< 1024)

　443(https)

　80(http)

　22(ssh)

　(>= 1024)

　993(imaps)

　31000

　8080

　1935(rtmp)

UDP

　443(https)

　8801

ESP

IP-ENCAP

　4500(nat-t)

GRE

ICMP

2017

(%)

83.9

43.3

28.4

0.1

72.9

0.2

11.0

0.1

0.3

1.1

10.5

3.8

0.0

0.2
5.1

0.1

0.3

0.0

2019

(%)

81.2

51.9

73.3

20.4

0.2

0.3

7.9

0.2

0.5

0.3

14.1

7.8

0.0

0.3
4.4

0.1

0.2

0.0

2018

(%)

78.5

40.7

68.5

26.5

0.1

0.2

10.0

0.1

0.3

0.7

16.4

10.0

0.0

0.2
4.8

0.1

0.2

0.0

2020

(%)

77.2

52.4

70.5

17.2

0.2

0.2

6.7

0.4

0.4

0.4

19.4

10.5

1.1

0.6
3.2

0.1

0.1

0.0

2021

(%)

71.9

53.5

65.8

11.6

0.2

0.1

6.1

0.6

0.4

0.2

24.5

15.9

0.9

0.8
3.3

0.2

0.1

0.0

protocol　port

year

TCP

　443(https)

　80(http)

ESP
GRE

ICMP

　993(imaps)

　1935(rtmp)

UDP
　443(https)

　8801

　3480

　12222

　4500(nat-t)

2017

(%)

84.4

53.0

27.0

0.4
0.1

0.0

2019

(%)

76.9

55.6

10.3

5.8
0.0

0.0

2018

(%)

76.6

52.8

16.7

0.4

0.2

11.4
7.5

0.3

0.1

17.3
8.3

0.3

0.1

19.4
10.6

0.0 0.00.0

0.0 0.00.0

0.1 3.42.3

0.2 3.04.5

3.9
0.1

0.0

2020

(%)

75.5

50.7

7.4

6.4
0.1

0.0

0.2

0.1

18.0
9.3

1.4

0.4

0.8

1.8

2021

(%)

70.3

44.4

5.0

5.8
0.1

0.0

0.2

0.1

23.8
16.3

0.7

0.3

0.2

3.7

Table 4: Mobile Users’ Usage by Port

Table 3: Broadband Users’ Usage by Port

10

Vol. 52Nov.2021

1. Periodic Observation Report

© Internet Initiative Japan Inc.

Kenjiro Cho

Research Director, Research Laboratory, IIJ Innovation Institute Inc.

Comparing the figures with 2020, UDP port 443 has risen

further here also, and the lunchtime peak sticks out a

bit more. When compared with broadband, we note that

mobile traffic levels remain high throughout the day, from

morning through night. The plot shows that usage times

differ from those for broadband, with three separate mobile

traffic peaks occurring on weekdays: morning commute,

lunch break, and evening from 17:00 to 22:00.

1.5 Conclusion
Looking back on the situation during the COVID-19 pandemic

over the past year and a half, weekday daytime broadband

traffic increased substantially from May to March of 2020

as the brakes were put on human movement and a greater

proportion of people stayed at home. But excluding this

period, traffic volume looks to be rising steadily largely in

line with an underlying growth curve. So, although traffic has

seen an annual increase of around 40% due to COVID-19,

the increase has not been so dramatic as initially feared,

and while we do observe ups and downs due to changes in

stay-at-home rates associated with COVID case numbers,

traffic continues to grow steadily overall.

Also, in contrast with PPPoE, which is subject to bottlenecks

and other constraints, IPoE traffic is growing apace and

driving growth in broadband traffic overall. The use of IPoE

can be expected to continue rising ahead.

Figure 10: Broadband Users’ Port Usage Over a Week
2020 (top) and 2021 (bottom)

Figure 11: Mobile Users’ Port Usage Over a Week
2020 (top) and 2021 (bottom)

11

© Internet Initiative Japan Inc.

Verifiable Credentials and BBS+ Signatures

*1 ISO/IEC 24760-1 defines identity as “a set of attributes related to an entity”.

*2 Internet Infrastructure Review Vol. 43, “2. Blockchain-based Identity Management and Distribution” (https://www.iij.ad.jp/en/dev/iir/043.html).

*3 Alex Preukschat and Drummond Reed, “Self-Sovereign Identity - Decentralized digital identity and verifiable credentials”, Manning Publications, May 2021 (https://

www.manning.com/books/self-sovereign-identity).

*4 Kengo Suzuki and Kento Goro, “Identity wa dare no mono? Hyperledger Indy & Aries de jitsugen suru bunsan identity” [Who do identities belong to? Decentralized

identities made possible by Hyperledger Indy & Aries] Impress R&D, May 2021, (https://nextpublishing.jp/isbn/9784844379447, in Japanese).

*5 Internet Infrastructure Review Vol. 26 “1.4.3 ID Management Technology” (https://www.iij.ad.jp/en/dev/iir/026.html).

*6 Verifiable Credentials Data Model 1.0 (https://www.w3.org/TR/vc-data-model).

*7 A driver’s license is first and foremost a credential to show that you are qualified to drive. Driver’s licenses are also commonly used as a form of ID since they

contain a set of key attributes, such as name, address, gender, date of birth, and face photo. The government has also identified integrating driver’s licenses with

Japan’s Individual Number Cards as a goal.

2.1 Introduction
The concept of self-sovereign identity (SSI) is drawing

attention as a new type of digital identity. A digital identity

represents who you are in digital space and consists of a

collection of attributes such as name, date of birth, gender,

and email address*1. Digital identities have traditionally

been managed by applications, enterprise systems, or

identity providers such as GAFAM. The idea of SSI is to

allow the owner of an identity to independently manage

the identity.

Two years have passed since we discussed SSI in IIR Vol. 43*2.

Over that time, the technologies and mechanisms needed

to make SSI a reality have continued to advance; this includes

Verifiable Credentials (VC), Decentralized Identifiers

(DIDs), digital agents, digital wallets, and governance

frameworks. These technologies are comprehensively

explained in other documents*3*4, and here we limit our focus

to providing an overview of VCs, which can be considered

the core of SSI. We also briefly discuss the implementation

of VCs using BBS+ signatures, which have been attracting

interest in the community since last year.

2.2 Credentials and Verifiable Credentials
The term “credentials” can mean various things depending

on context*5, but here we refer to the World Wide Web

Consortium (W3C) specification*6 and use the term to

mean “a set of one or more claims about a subject made

by an issuer”. For example, a driver’s license is a type of

credential in that it is a set of claims (e.g., the holder’s

name, address, date of birth, photograph, types of vehicles

that can be driven) that the issuer (e.g., department of

motor vehicles) makes about the subject (i.e., the license

holder).

Credentials allow us to have the credential issuer vouch

for who we are. For example, if I were trying to open a

bank account, the bank teller would not trust me if I simply

claimed, without any evidence, that “I am a male living

in ABC City and my birthdate is XYZ”. Showing my driver

license, which serves as my credentials, in this case means

that the license issuer certifies my claims, and this enhances

the credibility of my claims*7.

For a claim made using credentials to be accepted, however,

the credentials must be credible to the party to which the

claim is made. So who issued the credentials? Have the

credentials been rewritten or forged by someone else? Have

they expired or been revoked? Only once these things are

verified and validated can the information in the credentials

be accepted.

With physical credentials, the verifier looks at the information

on the document and determines its authenticity by checking

any special printing, such as watermarks, if present. This

sort of verification process is often difficult and requires

specialized skill.

VCs are digitalized credentials, so they can be verified

by a computer. This does not mean that the credentials

document is simply scanned into a digital image. Digital

signatures are used to verify the issuer’s identity and

whether or not the document has been tampered with.

This approach is based on the results of cryptographic

research into what’s known as anonymous credentials or

attribute-based credentials, and it can also accommodate

privacy-enhancing mechanisms using zero-knowledge

proof technology.

2. Focused Research (1)

12

Vol. 52Nov.2021

2. Focused Research (1)

© Internet Initiative Japan Inc.

Figure 1: Illustration of Providing Credentials

2.3 Illustration of Verifiable Credentials in Use
To provide a more tangible idea of how VCs are used, let’s

imagine a world in which certificate of residence (a common

identification document in Japan) are represented as VCs

and consider what happens from issuance through to the

use of these credentials.

Mr. A, who lives in X City, decides to sign up for a family

account on a service provided by Company B. Company

B offers a discount to residents of X City. To receive the

discount, Mr. A needs to show that he and his family live

in X City.

So Mr. A visits the X City residential services office and

asks for a VC version of his certificate of residence.

X City residential services verify Mr. A’s identity using an

appropriate method. They may, for example, ask him to

present a photo ID in person or to provide other VCs online.

Upon confirming Mr. A’s identity, X City residential services

obtain the attributes of Mr. A and his family from the

resident information database and issue a VC, which is

equivalent to a certificate of residence and contains the

attributes of Mr. A and family, including address, name, date

of birth, gender, and date resident status was obtained. Mr.

A stores the VC in his smartphone.

Mr. A then applies to Company B for the service. By presenting

the VC issued by X City to Company B, Mr. A can show

that he and his family reside in X City.

Both Mr. A and Company B want to exchange only a

minimum of personal information. So, Mr. A presents the

credentials to Company B with only the address of Mr. A

and family disclosed (i.e., selective disclosure) and the rest

of the information hidden (name, gender, date of birth, and

date of residential status). Figure 1 illustrates this. In this

example, we assume that Company B has specified what

attributes it needs (address), but it is also possible for Mr.

A to choose which attributes are provided.

Company B verifies the credentials and confirms that Mr. A

and his family reside in X City, as asserted by X City. This

allows Mr. A and his family to use Company B’s service at

a discounted price.

Note that the VC Mr. A received from X City is not specific to

Company B’s services. For example, Mr. A can subsequently

show some other company—call it Company C—that he

lives in X City or perhaps that members of his family are

over 20 years old. It is also envisioned that, in addition to

using a single VC, people will be able to combine multiple

VCs to provide the desired attributes.

Provide Cancel

Provide attributes

Certificate of residence
 Issued by X City, Z Prefecture on Jul 30, 2020

This information is
requested

Not provided
Name

A

Address

Y-cho, X City,

Z Prefecture

Gender

Male
Not provided

Not providedDate of birth

Company B’s service requests your information.
Please review your information

1313

© Internet Initiative Japan Inc.

*8 Stephen Curran, “Why Distributed Ledger Technology (DLT) for Identity?”, Hyperledger (https://www.hyperledger.org/blog/2021/04/21/why-distributed-led-

ger-technology-dlt-for-identity).

2.4 The Verifiable Credentials Ecosystem
In the example above, we encountered X City, which issued

the VC, Mr. A, who received the VC and presented it

to another party, and Company B, which verified the

credentials presented. The actors in a VC scenario and

the relationships between them are called the Verifiable

Credentials ecosystem, which can be laid out as in Figure 2.

The issuer is the person or organization that issues the VC.

In the previous example, this is X City.

The holder receives the VC issued by the issuer and stores

it in his/her smartphone or other device. The holder then

presents the VC to verifiers as needed. In the example

above, Mr. A was the holder of a VC version of his certificate

of residence.

The subject is an entity about which the VC makes claims.

In most cases, the subject is the same as the holder, but

they can be different entities in some cases, such as when

the subject is an infant and the holder is the infant’s guardian.

In the example above, the subject encompasses Mr. A as

well as his family members.

The verifier is the person or organization that verifies the

VC presented by the holder and uses the information it

contains. In the example above, this is Company B and

Company C.

The Verifiable Data Registry is data storage used by

the issuers, holders, and verifiers. It records information

required for performing verification, such as the issuer’s

identifier and public key and credential revocation registries.

Anyone can refer to this information, but it cannot be altered.

As such, it is often implemented on a blockchain.

VCs and self-sovereign identity are often mentioned in

conjunction with blockchain, and it is common to think

that VC itself is recorded on a blockchain, but this is a

misconception. The Verifiable Data registry is a registry

that anyone can refer but not alter, so it is not considered

an appropriate place for VCs containing personal data*8.

As the previous example illustrates, the two major VC

events occur when the issuer issues credentials and when

the holder presents them to a verifier. The holder asks the

issuer to issue credentials and is thus issued with a VC that

contains the subject’s attributes. The holder saves this on

her smartphone or other device and later presents only the

necessary parts to verifiers, who then verify the credentials.

The result is that the verifier is able to confirm that the subject

has the attributes as certified by the issuer.

Figure 2: Verifiable Credentials Ecosystem

Issuance Presentation

Subject

Verifiable Data Registry

Refers to identifiers / public keys

Registers identifiers / public keys Refers to identifiers / public keys

Presents credentialsIssues credentials

Credentials saved

Issuer VerifierHolder

14

Vol. 52Nov.2021

2. Focused Research (1)

© Internet Initiative Japan Inc.

2.5 How Verifiable Credentials and Traditional
Digital Certificates Differ

Credentials that use digital signatures are actually not a

new concept. Digital certificates are constantly being verified

when we communicate via HTTPS on a daily basis. OpenID

Connect, which is often used for digital identity federation,

also stores identity information in digitally signed ID tokens

to facilitate verification. In that sense, these digital certificates

and tokens also serve as verifiable credentials.

So how do VCs and traditional digital certificates differ?

We see three main points. Not all VCs check all of these

points, but we seem to call credentials VCs when at least

one of these characteristics is present.

1. Has a mechanism for providing only the minimum

of data required

2. A holder is always present between the issuer and

the verifier

3. Uses a decentralized identifier (DID)

Let’s start with the first point. Many VCs have a mechanism

for minimizing the data that the credential holder discloses.

One of the most notable is the use of a cryptographic technique

called zero-knowledge proofs. A zero-knowledge proof

allows the holder to present only the attributes in credential

that the verifier requires while keeping other attributes

hidden. It is also possible to disclose only the fact that the

hidden attributes satisfy certain conditions. For example,

the holder can hide the name, address, and date of birth on

a driver’s license while also showing that he is qualified to

drive a standard automobile and that he is at least 20 years

of age. This sort of mechanism is key to protecting the privacy

of the holder and subject.

The second point also has to do with protecting the holder’s

privacy. If we consider the issuer to be the Identity Provider

(IdP) and the verifier to be the Relying Party (RP), then the

VC mechanism can be seen as similar to existing identity

federation mechanisms such as OpenID Connect and SAML.

VCs differ from these standards in that they do not allow

direct interaction between the issuer and the verifier; there

is always a holder between the two. This aspect of VCs

is one reason they play a central role in SSI. It is useful

because the holder may not want the issuer and verifiers

to know his every move in terms of what information he

has provided to what sort of providers and when.

The third point relates to decentralized identifiers (DIDs),

which, along with VCs, are the cornerstone of SSI. DIDs

are identifiers that can refer to people, organizations, and

things, and they are associated with a public key that is

needed to verify the digital signature. The association

between the DID and the public key is guaranteed in a

decentralized manner using blockchain or the like without

the need for a trusted third party such as a registration

authority. One does not need to use DIDs to realize the

benefits of VCs, but they are often used together to unlock

the advantages of both in tandem.

1515

© Internet Initiative Japan Inc.

*9 CCI (COVID-19 Credentials Initiative) (https://www.covidcreds.org/).

*10 LFPH (Linux Foundation Public Health) (https://www.lfph.io/).

*11 Introducing the Global COVID Certificate Network (GCCN) (https://www.lfph.io/2021/06/08/gccn/).

*12 Vaccination Credential Initiative (VCI) (https://vaccinationcredential.org/).

*13 European Digital Identity - European Commission (https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en).

*14 Kiva Protocol, built on Hyperledger Indy, Ursa and Aries. Sierra Leone has adopted this protocol and built a platform that allows people perform identity verification

in around 11 seconds for the purpose of small-scale financing. (https://www.hyperledger.org/blog/2021/01/20/kiva-protocol-built-on-hyperledger-indy-ursa-and-ar-

ies-powers-africas-first-decentralized-national-id-system).

*15 IATA - Travel Pass Initiative (https://www.iata.org/en/programs/passenger/travel-pass/).

*16 “Keio University Commences Demonstration Experiment of Next-Generation Digital Identity Platform: To Issue Certificates of Enrollment and Certificates of Expect-

ed Graduation to Smartphone Applications” (https://www.keio.ac.jp/en/press-releases/2020/Nov/13/49-76286/).

*17 Trusted Web White Paper ver 1.0 (https://www.kantei.go.jp/jp/singi/digitalmarket/trusted_web/pdf/documents_210331-2.pdf, in Japanese).

*18 Hyperledger Indy (https://www.hyperledger.org/use/hyperledger-indy).

*19 Hyperledger Aries (https://www.hyperledger.org/use/aries).

*20 Hyperledger Ursa (https://www.hyperledger.org/use/ursa).

*21 Identity verification solutions - Microsoft Security (https://www.microsoft.com/en-us/security/business/identity-access-management/verifiable-credentials).

The use of VCs is also expanding to include other areas,

with examples being eKYC (online know your customer)

for microfinance by the NPO Kiva*14 and the IATA Travel

Pass*15 from the International Air Transport Association

(IATA).

In Japan, Keio University, together with five Japanese

companies and in cooperation with Microsoft, commenced

demonstration testing of student identity system that uses

VCs and DIDs in October 2020*16. And in a March 2021

white paper, the Trusted Web Promotion Council mentions

VCs as one of the building blocks for realizing trustable

communication*17.

A slew of products supporting such use cases is being

developed. The Linux Foundation’s Hyperledger project

is heavily engaged in developing a range of technologies,

with a particular focus on Hyperledger Indy*18, a distributed

ledger for providing DIDs, Hyperledger Aries*19, an agent

for handling VCs, and Hyperledger Ursa*20, a cryptographic

library for use by these projects. Azure AD, Microsoft’s

Identity as a Service (IDaaS) offering, also includes VC

functionality and has been in public preview since April

2021*21.

2.6 Developments in Verifiable Credentials
Vaccination certificate implementations that use these

characteristics of VCs and other initiatives are being

trialled.

In April 2020, the COVID-19 Credentials Initiative (CCI)

was launched to enable the application of VCs to facilitate

the interoperable use of privacy-preserving digital credentials

for COVID-19-related purposes*9. The CCI has now joined

Linux Foundation Public Health (LFPH)*10. In June 2021,

LFPH launched the Global COVID Certificate Network

(GCCN), a cross-border initiative for the exchange of

vaccination certificates*11. Meanwhile, in January 2021,

Microsoft, Oracle, Salesforce, and others also launched

the COVID-19 Credentials Initiative (CCI), which is working

to digitalized vaccine certificates based on VCs*12.

Similarly, the European Digital Identity Framework unveiled

by the European Commission in June 2021 put forward the

concept of a Digital Identity Wallet usable by all citizens

and residents of EU member states. Although it does not

specifically mention the use of VCs and SSI, the heavy

influence of VCs is apparent given that the model and use

cases comprise issuers, holders, and verifiers and that

holders can selectively disclose attributes*13.

16

Vol. 52Nov.2021

2. Focused Research (1)

© Internet Initiative Japan Inc.

*22 A Path Towards Interoperability: CCI Released a Paper on Different Flavors of Verifiable Credentials (https://www.lfph.io/2021/02/11/cci-verifiable-credentials-fla-

vors-and-interoperability-paper/).

*23 Internet Identity Workshop (https://internetidentityworkshop.com/).

*24 Why the Verifiable Credentials Community Should Converge on BBS+ (https://www.evernym.com/blog/bbs-verifiable-credentials/).

*25 BBS+ Signatures 2020, W3C Community Group Draft Report (https://w3c-ccg.github.io/ldp-bbs2020/).

*26 DIF - Applied Crypto Working Group (https://identity.foundation/working-groups/crypto.html).

*27 mattrglobal/jsonld-signatures-bbs: A linked data proof suite for BBS+ signatures (https://github.com/mattrglobal/jsonld-signatures-bbs/).

*28 Jan Camenisch and Anna Lysyanskaya, “Signature Schemes and Anonymous Credentials from Bilinear Maps”, CRYPTO 2004 (http://dx.doi.org/10.1007/978-3-

540-28628-8_4).

*29 Man Ho Au, Willy Susilo, and Yi Mu, “Constant-Size Dynamic k-TAA”, SCN 2006 (http://dx.doi.org/10.1007/11832072_8).

*30 Jan Camenisch, Manu Drijvers, and Anja Lehmann, “Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited”, Trust 2016 (http://dx.doi.

org/10.1007/978-3-319-45572-3_1).

*31 Dan Boneh, Xavier Boyen, and Hovav Shacham, “Short Group Signatures”, CRYPTO 2004 (http://dx.doi.org/10.1007/978-3-540-28628-8_3).

2.7 Verifiable Credentials Implementations
While W3C is working to standardize VCs, this standardiza-

tion effort is focused on the data model. Specific details

vary widely from implementation to implementation. An

explanatory document*22 by CCI and LFPH refers to these

variations in implementation as “flavors”.

Here, we look at JSON-LD ZKP with BBS+, a flavor that

has attracted a lot of attention at the Internet Identity

Workshop (IIW)*23 and in related circles. JSON-LD ZKP with

BBS+ is a relatively new scheme that was unveiled by New

Zealand-based company MATTR at the April 2020 IIW. It

has been well received by the community*24, and non-MATTR

engineers are now also involved in developing and discussing

the scheme’s standard as part of the W3C Credentials

Community Group (CCG)*25 and the Decentralized Identity

Foundation’s (DIF) Crypto Working Group*26. It is being

developed in the open on GitHub*27, where we have also

made a few contributions.

Key aspects of JSON-LD ZKP with BBS+ are that it uses

the JSON-LD format to encode credentials, and it uses

BBS+ signatures, which work well with zero-knowledge

proofs, as the digital signature scheme.

The JSON-LD specification is not as well known as JWTs

(JSON Web Tokens) in a digital identity context, but it

is widely used in the Semantic Web and Search Engine

Optimization (SEO) domains. An advantage of JSON-LD is

that it incorporates Linked Data elements into JSON data

and can thereby uniquely identify the terms used to describe

data using URIs while retaining the compactness of JSON.

Metadata in JSON-LD format is embedded in many websites

these days. Figure 3 shows an example of a credential

represented in JSON-LD.

BBS+ signatures are multi-message digital signatures*28*29*30

that extend BBS group signatures*31. They are a type of

elliptic curve cryptography that uses an operation called

{

 "@context": [// JSON-LD context

 "https://www.w3.org/2018/credentials/v1",

 "https://schema.org",

 ...

],

 "id": "http://example.edu/creds/1234", // Credential identifier

 "type": "VerifiableCredential", // Credential type

 "issuer": "https://example.edu/issuers/1", // Credential issuer

 "issuanceDate": "2021-06-22T00:00:00Z", // Credential issue date

 "expirationDate": "2022-06-22T00:00:00Z", // Credential expiry date

 "credentialSubject": {

 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21", // Subject identifier

 "type": "Person", // Subject type

 "birthDate": "1970-01-01", // Subject DOB

 "name": "John Smith", // Subject name

 ... // Other attributes

 },

 "proof": { ... } // Signature value needed for verification etc.

}

Figure 3: Example of JSON-LD Credentials

1717

© Internet Initiative Japan Inc.

pairing. They differ from the commonly used RSA and

ECDSA signatures in that it is possible to sign a list of multiple

pieces of data (rather than a single piece of data). The

structure also makes it easy to combine with zero-knowledge

proof technology, so you can verify a signature as being

valid while still hiding some elements in the list of signed

data, and you can hide selected elements while still providing

proof that they meet some criteria.

JSON-LD ZKP with BBS+ canonicalizes credentials represented

in JSON-LD into a data form called statements using LD

canonicalization. BBS+ signatures are then used to sign and

verify the list of statements. For example, the JSON-LD

credentials in Figure 3 are converted into a list of statements

as shown in Figure 4 and then signed. Using BBS+ signatures

to sign the list of statements allows you to control whether

each particular statement is shown or not. It is not yet

possible, however, to provide high-level proofs showing that a

particular value within a statement (name, date of birth, etc.)

satisfies certain conditions (e.g., date of birth falls within a

certain range) while keeping that value hidden.

2.8 The Future of Verifiable Credentials
Some issues remain to be resolved before VCs and JSON-LD

ZKP with BBS+ can be put to practical use. Here, we go

over three key issues and look at approaches and efforts

aimed at solving them.

■ Issue 1: Interoperability with existing digital identity

technologies

The first challenge is ensuring interoperability between the

new concept that VCs represent and existing digital identity

specifications and products. The OpenID Foundation (OIDF)

is looking at addressing this by using the Self-Issued OpenID

Provider (SIOP) framework, which is originally part of OpenID

Connect, to handle VCs on top of OpenID Connect. Engineers

from MATTR, the original proponent of JSON-LD ZKP with

BBS+, are involved in this work.

■ Issue 2: Standardizing the various specifications

The JSON-LD ZKP with BBS+ and LD canonicalization

specifications mentioned above are still being discussed and

not yet finalized as standard specifications. In the case of

JSON-LD ZKP with BBS+, the W3C CCG is developing the

specification and, in parallel with this, DIF’s Crypto Working

Group is also holding discussions, as mentioned earlier. The

details are being standardized as W3C specifications as

they are finalized, with future details to be discussed and

worked out by the DIF’s Crypto Working Group. For example,

the means of making high-level proofs possible, such as

showing that a person is 20 years or older while keeping

date of birth hidden, is on the DIF Crypto Working Group’s

agenda for discussion. As for LD canonicalization, the

W3C’s Linked Data Signatures Working Group currently

being set up is expected to pursue work on this in the form

<did:example:ebfeb1f712ebc6f1c276e12ec21> <http://schema.org/birthDate> "1970-01-01"^^<http://schema.org/Date> .

<did:example:ebfeb1f712ebc6f1c276e12ec21> <http://schema.org/name> "John Smith" .

<did:example:ebfeb1f712ebc6f1c276e12ec21> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org/Person> .

<http://example.edu/creds/1234> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <https://www.w3.org/2018/credentials#VerifiableCredential> .

<http://example.edu/creds/1234> <https://www.w3.org/2018/credentials#credentialSubject> <did:example:ebfeb1f712ebc6f1c276e12ec21> .

...

Figure 4: List of Signed Statements (Excerpt). Each Line is Called a Statement.

18

Vol. 52Nov.2021

2. Focused Research (1)

© Internet Initiative Japan Inc.

*32 Linked Data Signatures Working Group Charter (https://w3c.github.io/lds-wg-charter/index.html).

*33 Internet Infrastructure Review Vol. 49, “Trends in Post-Quantum Cryptography—2020” (https://www.iij.ad.jp/en/dev/iir/049.html).

of RDF Dataset Canonicalization (RDC) and Linked Data

Integrity (LDI). As of this writing (August 2021), the aim

according to the Proposed Charter*32 is to begin work in

September 2021 and produce a W3C Recommendation by

September 2023, or within two years.

■ Issue 3: Resilience to quantum computing

The third issue to highlight, and a long-term one, is that of

post-quantum cryptography, which we also covered back

in IIR Vol. 49*33. The security of BBS+ signatures relies

on the hardness of the discrete logarithm problem on

elliptic curves. It is known that quantum computers will be

able to efficiently solve this problem. So, unfortunately,

BBS+ signatures and JSON-LD ZKP with BBS+, which

uses them, are not quantum resistant. The same goes

for the Camenisch-Lysyanskaya (CL) signatures used in

Hyperledger Indy as well as the RSA, ECDSA, and EdDSA

signatures often used in JWTs. Post-quantum anonymous

credentials based on lattice-based signature schemes

and Zero-Knowledge Scalable Transparent Arguments of

Knowledge (ZK-STARK) have also been proposed, but much

room for improvement, including performance enhancements,

remains before they become practically viable.

2.9 Conclusion
We have looked at the current status of and future issues

for VCs, a topic that continues to gain attention, and one

of the implementations in the form of the JSON-LD ZKP

with BBS+ flavor. Personally, I expect VCs to be used as

and when appropriate rather than completely replacing

conventional digital certificates and ID tokens. The real

value of VCs is evident in situations where the privacy

of people, organizations, and things must be protected,

particularly when there is a need to minimize what data

is provided. And VCs that use JSON-LD make possible

credential statements with strong expressive power and

interoperability, facilitating digital identity bridging across

a wide range of organizations and industries. Many issues

remain to be resolved before VCs are used in real-world

applications, but we will be keeping an eye on efforts

to standardize and popularize their use, and we hope to

make our own contributions toward the development of

the community in this area as well as society as a whole.

Dan Yamamoto

Senior Engineer, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ.
Dr. Yamamoto began his current role in 2021. He investigates and researches digital identity and information security issues.

1919

© Internet Initiative Japan Inc.

3. Focused Research (2)

3.2 Why Implement it in Haskell?
As with my implementations of HTTP/2 and TLS 1.3, I am

implementing QUIC and HTTP/3 in the Haskell programming

language. My reasons for choosing Haskell are as follows.

• Rich data types allow for concise problem repre-

sentation, and strong type checking can detect

many coding errors.

• Lightweight threads are provided as standard,

enabling threaded programming with better code

readability than with event-driven programming

and a small overhead when switching and creat-

ing threads, where state management tends to

be cumbersome (any reference to threads below

means lightweight threads).

• Many data types are immutable and can be safely

shared between threads.

• STM (Software Transactional Memory) is provided

as standard, enabling threaded programming without

deadlocks.

Most of the QUIC implementations by other teams use

event-driven programming, whereas I use threaded pro-

gramming. I feel that threaded programming not only

improves code readability but also allows me to test

specifications from a different perspective than other

implementers.

Below, I describe specific implementation points.

One of IIJ’s goals is to contribute to the development of

the Internet, and one way our lab does this is through its

involvement in standardizing new protocols. For years, we

have been helping to develop more complete specifications.

Our work involves discussing new protocol specifications,

implementing those specifications, and testing interopera-

bility with other implementations.

Since 2013, I have participated in the standardization of

HTTP/2 and TLS 1.3. Over the last two and a half years,

I have been involved in the standardization of QUIC and

HTTP/3, which are closely related to these two protocols. In

this report, I explain how I implemented QUIC and HTTP/3.

3.1 QUIC and HTTP/3
QUIC is a new transport protocol that uses UDP. It is

defined as a large specification incorporating the following

features.

• Reliability, flow control, and congestion control

provided by TCP

• Multiplexing with asynchronous streams derived

from HTTP/2 (stream fragmentation and reassembly)

• Security features provided by TLS 1.3 (key exchange,

authentication of peers, encryption of data)

The basic units in QUIC are called packets. A packet can

contain multiple units of data called frames. There are

several types of frames: e.g., application data is stored in

STREAM frames, and ACK (acknowledgement) infor-

mation is stored in ACK frames. HTTP as defined in the

QUIC protocol is called HTTP/3.

Implementing QUIC in Haskell

20

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

3.3 QUIC Streams and Connections
QUIC divides communications into streams in order to

multiplex within a single connection. HTTP/2 uses streams

for the same purpose, but while HTTP/2 streams can only

carry HTTP requests and responses, QUIC streams can

carry data for any application.

After working on a QUIC API for quite a while, I discovered

the following abstractions.

• The role of QUIC connections corresponds to that

of network I/O management handled by the OS.

• QUIC streams correspond to TCP connections.

TCP connections here means the simplest form of TCP

connections that only exchange one piece content, as in

HTTP/1.0. Viewing things from this angle, I realized that

streams can be controlled with an API that mimics the

socket API. Part of the current API appears below.

Haskell type annotations are separated by a right arrow.

The return type is on the far right. The other parts of the

type signature are the argument types. When IO appears

to the left of the type, it means the method has side

effects, such as input and output operations. When IO

does not appear, the data type is immutable and has no

side effects. () denotes that there is no return value, and

ByteString is, of course, the byte string type. So, IO ()

means that there is no meaningful return value and that

only the function’s side effects are of interest.

When implementing an HTTP/1.0 server in Haskell, the

usual convention is to use a synchronous approach of

starting one thread for each TCP connection from a client,

reading a request, writing a response, and then terminating

the thread. In HTTP/2, you need to manage multiple threads

to enable multiplexing. When implementing HTTP/3, the

QUIC library handles this multiplexing. So, when using the

above API, it is possible to use the conventional synchronous

approach of starting one thread per stream.

3.4 Accepting Connections on a Server
The type annotation of the function that starts a server is

as follows.

That is, run takes a server configuration and a server

application function (a function that receives a connection

and does some processing, including input and output) as

arguments. The Dispatcher thread launched by this function

opens a listening (wildcard) socket for each network

interface. When a new connection is accepted, the threads

that make up the connection are started (see Section 3.5).

-- Abstract data type representing a stream

data Stream

-- Function for creating streams

stream :: Connection -> IO Stream

-- Function for closing streams

closeStream :: Stream -> IO ()

-- Function that accepts streams created by peers

acceptStream :: Connection -> IO Stream

-- Function that receives data from streams

recvStream :: Stream -> Int -> IO ByteString

-- Function for sending data to streams

sendStream :: Stream -> ByteString -> IO ()

run :: ServerConfig -> (Connection -> IO ()) -> IO ()

21

© Internet Initiative Japan Inc.

There are six types of QUIC packets. The body of Initial

packets, 0-RTT packets, Handshake packets, and 1-RTT

packets is encrypted and the header is protected. The

body of Version Negotiation packets and Retry packets

is not encrypted, nor is the header protected. To analyze

these packets in a consistent, unified manner, I devised a

method of dividing the analysis into two stages.

(1) Parse parts of the header that are not protected

(determine the packet type etc.)

(2) Decrypt encrypted text and remove header

protection

Stage (1) is performed by the Dispatcher thread. The

Dispatcher thread looks at the results of the analysis in

(1) and creates a new connection if it is an Initial packet,

or performs the migration process if it is an appropriate

1-RTT packet (see Section 3.9). The specification does not

allow the server to accept Version Negotiation packets or

Retry packets, so these are simply discarded.

Stage (1) is also performed by the Reader thread described

below, and (2) is performed by the Receiver thread de-

scribed below. The two-stage analysis idea has yielded a

common data structure for the header information, resulting

in more concise code than in earlier implementations.

3.5 Threads that Make up a Connection
When starting a new connection, the Dispatcher thread

starts the main thread for that connection and asks it to

create the connection. The main thread starts a group of

threads that make up the connection, as shown in Figure 1,

and waits for them to finish.

When the connection is created, a connected socket is

created. So packets for this connection are read by the

Reader thread, not the Dispatcher thread. The Reader

performs the packet analysis in (1) above, and passes the

parsed header information, protected header, and

encrypted body to the Receiver thread through the queue

(RecvQ).

The Receiver thread performs (2) above, extracts the

packet’s frames, and processes each of them. STREAM

frames are reassembled and passed to the Server thread

through the queue (InputQ). When it receives an ACK

frame, the Receiver thread deletes the corresponding

information from the information-retransmission container

(SentPackets) described in Section 3.10.

The Server thread is what invokes the server application

function. The output is sent to the Sender thread through

a queue (OutputQ). The Server thread is responsible for

Callback configuration Key installation

Packet input

Packets deleted

Data resent

Receiver

InputQ OutputQ

RecvQ

TLS
handshaker

Server

Sender Resender

Reader Connected
socket

SentPacketsPacket output

Figure 1: Threads that Make up a Connection

22

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

launching the TLS handshaker thread to perform key

exchange and synchronize key availability timing before

launching the application.

The Server thread is what invokes the server application

function. The output is sent to the Sender thread through

a queue (OutputQ). The Server thread is responsible for

launching the TLS handshaker thread to perform key

exchange and synchronize key availability timing before

launching the application.

When the Resender thread detects a packet loss, it retrieves

the relevant information from the information-retransmission

container and resends it by putting it into the OutputQ.

STM is used for the queues and other data sharing, so

these threads do not deadlock. If any one thread causes

a fatal error, the entire thread group terminates. When this

happens, resources are properly released and no leaks

occur.

3.6 Connected Sockets
TCP lets you generate a connected socket from a wildcard

socket using the accept() system call. The accept()

system call cannot be used with UDP, however.

For example, suppose your server has a wildcard socket

{UDP, 192.0.2.1, 443, *, *} and a client requesting a

connection on 203.0.113.1:3456. The connected socket

you want to generate is {UDP, 192.0.2.1, 443, 203.0.113.1,

3456}. A simple way to do this is as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR

option.

(2) Call the bind() system call with 192.0.2.1:443.

(3) Call the connect() system call with 203.0.113.1:3456.

Unfortunately, on BSD-based OSs, (2) causes an error.

Linux allows (2), but race conditions can occur. These

problems can be solved as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR

option.

(2) Call the bind() system call with *:443.

(3) Call the connect() system call with 203.0.113.1:3456.

In this case, the local address is set to 192.0.2.1.

This method works fine on many operating systems and

does not cause race conditions. However, you need to be

careful with privileges. Suppose that, in TCP, a process with

root privileges creates a wildcard socket for a privileged

port. Even if this process relinquishes root privileges

for security reasons, the accept() system call can still be

executed. Linux, however, requires the process to at least

have the CAP_NET_BIND_SERVICE capability to generate a

UDP-connected socket using the above method.

23

© Internet Initiative Japan Inc.

3.7 Closing Connections
When using TCP with the socket API, a call to the close()

system call by the application immediately returns control

to the application, and the OS is then responsible for

subsequently terminating TCP. The QUIC implementation

also needs to enable this sort of control.

In my implementation, when the server (or client) application

function terminates, all threads except the main thread

terminate and unnecessary information is discarded. The

main thread also starts a separate thread to handle the

termination procedure with the minimum information needed

to resend the CONNECTION _ CLOSE frame if need be.

In QUIC, an ACK is not returned for packets that contain a

CONNECTION _ CLOSE frame. Once the peer has received

a CONNECTION _ CLOSE frame, it immediately stops

sending packets. So after sending the CONNECTION _

CLOSE frame, we wait a while to make sure that no more

packets will arrive from the peer. If packets do arrive, this

may indicate that the CONNECTION _ CLOSE frame has

been lost, so the packet with the CONNECTION _ CLOSE

frame is resent.

3.8 TLS Handshake
QUIC uses TLS 1.3 to perform handshakes to authenticate

peers and exchange keys. TLS 1.3 messages are detached

from the TLS record layer and stored in a simple data

format in CRYPTO frames.

Figure 2 illustrates a full handshake in QUIC.

The client generates Initial keys based on the randomly

generated connection ID. The TLS 1.3 ClientHello message

is put into a CRYPTO frame, which is then put into the

Initial packet, which is encrypted using the Initial key and

sent. Note that privacy is not protected because Initial

keys can also be generated on intermediate devices.

Upon receiving this, the server generates the Initial key

and decrypts the Initial packet. Next, it generates the

Handshake key and 1-RTT key based on the retrieved

ClientHello. It then puts the generated ServerHello into the

Initial packet, encrypts it with the Initial key, and sends it.

Other TLS messages are put into Handshake packets and

encrypted with the Handshake key before being sent.

Figure 2: Full QUIC Handshake

ClientHello

Initial packet

Finished

Handshake packet

Data

1-RTT packet

ServerHello

Initial packet

Client Server

EncryptedExtensions

Certificate

CertificateVerify

Finished

Handshake packet

24

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

A client that receives these packets generates the

Handshake key and 1-RTT key. It also puts the generated

Finished message into a Handshake packet, encrypts this

with the Handshake key, and sends it. At this point, 1-RTT

packets capable of storing application data can be sent.

For the second connection, the client can generate a 0-RTT

key from the stored information and send an Initial packet

followed by a 0-RTT packet capable of storing application

data encrypted with the 0-RTT key.

I tried extending the TLS library in various ways to make

TLS 1.3 features available in QUIC. Major modifications

were needed in order to separate the record layer, but

I figured out that starting a dedicated TLS thread was a

good way of reusing the TLS library without making any

further modifications beyond that.

The callback mechanism proved effective in keeping the

state within the scope of the TLS library so that the Client/

Server threads do not have to manage the TLS 1.3 state.

When a key is generated, a specified callback is used to

install the key in the shared data area. And using STM

makes it possible for other threads to gauge when the key

was installed.

The server-side TLS handshaker thread terminates after

sending a NewSessionTicket message in a 1-RTT packet.

Meanwhile, the client-side TLS handshaker thread terminates

after a set delay upon receiving a HANDSHAKE _ DONE

frame.

3.9 Migration
Client IP addresses and port numbers can change.

This happens, for example, when the network interface

switches from mobile phone to Wi-Fi, or when the port

mapping on a NAT gateway between the client and server

changes. Connection migration is a feature for keeping

connections alive in situations like this.

If the client IP address or port number changes, the server

side of my implementation will receive 1-RTT packets on

the listening socket. By examining the connection ID, it

can determine that a migration has occurred rather than a

bad packet.

25

© Internet Initiative Japan Inc.

*1 Reference: J. Iyengar, M. Thomson, “QUIC:A UDP-Based Multiplexed and Secure Transport”, RFC 9000, 2021

In this case, the Dispatcher thread starts the Migrator

thread (Figure 3), which creates a new connected socket,

starts a Reader thread that will use that socket, and performs

path validation. For details on path validation, see RFC

9000*1.

Until a new connected socket is created, the Dispatcher

thread passes any packets that arrive to the Migrator

thread, and the Migrator thread passes them to the Receiver

thread. It also closes the old connected socket after a set

delay, thereby terminating the old Reader thread.

We will now look at how migration is handled on the client

side, starting with the case in which connected sockets

are used.

(1) Detect somehow that a new preferred network

interface is available.

(2) Call the migration API. Once a new socket is

created and the connect() system call is called,

the OS sets the remote address and port based

on the call’s arguments. The routing table is then

searched using the remote address to find the

network interface to which the route points. The

IP address of that network interface is chosen as

the socket’s local address. Local ports are chosen

randomly.

(3) Use the connected socket that was created and

send() to send packets.

The advantage of this method is that path validation can

be performed in step (2), and the disadvantage is that

OS-specific methods are needed for step (1). Meanwhile,

another option is to use wildcard sockets.

• When sendto() is called, the OS sets the remote

address and port based on the call’s arguments.

The routing table is also searched using the remote

address to find the network interface to which the

route points. The IP address of that network interface

is chosen as the socket’s local address. The local

port is chosen randomly when sendto() is first

called.

The advantage of this method is that migrations happen

automatically without the need to keep track of the preferred

network interface or provide a special migration API. The

disadvantages are the cost and poor performance involved

in sending packets and the lack of an opportune time for

path validation.

As each method has its advantages and disadvantages,

I plan to provide both so that either can be selected via the

settings when launching a client.

Terminates

Creates

Receiver

RecvQ

Reader Reader

Connected
socket

Connected
socket

Migrator

MigQ

Dispatcher

Listening
socket

Figure 3: Connection Migration Flow Chart

26

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

3.10 ACK Processing Algorithmn
In QUIC, new packet numbers are used for retransmissions.

Unlike TCP, which reuses sequence numbers when resending,

QUIC has no ACK ambiguity problem. When a packet is

resent, the packet number and ciphertext both change.

For this reason, RFC 9000 refers to the “retransmission

of information” rather than simply to the resending of

packets.

In standard TCP, the ACK specifies the sequence number

that should be delivered next, so it is not possible to determine

whether other TCP segments have been delivered to the

peer. QUIC ACK frames, meanwhile, can list packet numbers

that have been received.

To enable the retransmission of information carried in

packets that have been sent, an information-retransmission

container is prepared and the information stored therein at

time of transmission. The following three operations can

be performed with information-retransmission containers.

• When sending, insert information with the packed

number as the key.

• When an ACK is received, delete the information

with the packet number as the key.

• If no ACK is returned after a set delay, retrieve

and delete the information from the container and

retransmit it.

A common data structure in Haskell providing this function-

ality is the PSQ (Priority Search Queue). We specify the

packet number as the key, the transmission time as the

priority, and the information as the value.

When I implemented the information-retransmission container

with PSQs, I noticed that performance would drop signifi-

cantly at times. In a normal implementation, for example, say

that ACKs are returned as follows.

That is, the implementation processes ACKs in response

to ACKs and dynamically manages which packet numbers

need to be ACK’d. At one point, however, Firefox Nightly

returned the following ACKs.

ACKs in response to ACKs are not processed, so unnecessary

packet numbers are not deleted. The specification permits

this form of ACK. Denoting the size of the PSQ as n and

the number of packet numbers specified in the ACK as m,

the complexity of the entire delete operation is O(m log n).

When m becomes large, as with the Firefox Nightly build

I encountered, the delete operation becomes very costly.

I realized that predicates could be used to solve this problem.

A list of packet numbers like [4,5,7,8,9], for instance, is

represented in an ACK frame in the form of ranges like so:

[(4,5),(7,9)]. This can be converted into a predicate as

follows.

[0,1,2,3]

[0,1,2,3,4,5,6,7]

[0,1,2,3,4,5,6,7,8,9,10,11]

[0,1,2,3]

[4,5,6,7]

[8,9,10,11]

27

© Internet Initiative Japan Inc.

*2 Reference: J. Iyengar, I. Swett, “QUIC Loss Detection and Congestion Control”, RFC 9002, 2021

*3 Reference: R. Marx, “QUIC and HTTP/3 event definitions for qlog”, Internet-Draft, 2020

*4 qvis, “Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!” (https://qvis.quictools.info/).

Haskell provides as standard a data structure called finger

trees (FingerTree), a sequence representation that is

easily manipulable at both ends, like a bidirectional list.

Finger trees have an operation for splitting themselves into

a finger tree that contains only elements matching a

predicate and a finger tree holding the non-matching

elements, which runs in O(n) time. So using finger trees

and predicate-based splitting instead of PSQs, I was able

to reduce the computational overhead when ACKs are

received.

3.11 Reassembling Streams
QUIC packets do not span multiple IP packets. That is,

they are not fragmented or reassembled at the IP level.

Data within streams, on the other hand, can span multiple

QUIC packets. So the sender needs to split the stream data

into appropriately sized fragments, and the receiver needs

to reassemble it.

When a STREAM frame arrives, the fragment is inserted

into a reassembly container. Then, if there is a continuous

set of fragments starting at the expected offset, they are

removed and put into the recvStream queue. Hence,

the reassembly container has insert and retrieve & delete

operations.

In the old implementation, I used a one-way list for the

reassembly container. Inserts and retrieve & delete opera-

tions both ran in O(n) time. When I profiled data transfers

in a production environment, I found stream reassembly to

be a bottleneck.

This prompted me to adopt a different data structure for the

reassembly container: a skew heap populated with finger

trees. Elements can be prepended or appended to a finger

tree in O(1) time to represent a continuous series of fragments.

Computation complexity is reduced: inserts take O(log n)

and retrieve & delete operations take O(n) time.

3.12 Flow Control
Flow control is a mechanism whereby senders limit the volume

of packets they send to within the bounds of what the receiver

can handle. QUIC uses a scheme in which receivers tell

senders how much data they can receive (credit). This

is often conflated with congestion control, described in

Section 3.13, but it is a separate mechanism.

In my implementation, flow control is done at the stream

API level.

• sendStream sends data within the bounds allowed

by the peer, and if the amount exceeds the limit, it

waits for credit from the peer.

• recvStream assumes that the application will consume

this data and sends credit for the amount of data

received to the peer.

3.13 Loss Detection and Congestion Control
QUIC loss detection and congestion control are defined

in RFC 9002*2. Loss detection uses both ACK-based and

probe timeout-based methods. And congestion control

uses an algorithm based on NewReno. I implemented the

pseudocode given in the RFC faithfully in Haskell. In the

process of doing so, I discovered, and reported, a number of

inconsistencies in the specifications. In recognition of this,

the name of this article’s author (Kazu Yamamoto) has been

added to the RFC 9002 contributors list.

Loss detection and congestion control logs are exported in

qlog format*3 and fed into the qvis*4 visualization suite to

monitor the program’s operation and find errors.

predicate :: PlainPacket -> Bool

predicate pkt = (4 <= n && n <= 5) || (7 <= n && n <= 9)

 where

 n = packetNumber pkt

28

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

*5 h2spec, “A conformance testing tool for HTTP/2 implementation” (https://github.com/summerwind/h2spec).

*6 h3spec, “Test tool for error cases of QUIC and HTTP/3” (https://github.com/kazu-yamamoto/h3spec).

3.14 Testing
My QUIC library and HTTP/3 library implement a variety

of unit tests. In this section, I discuss the use of some

noteworthy unit tests and external tests.

■ Loss detection

To test if loss detection is working correctly, I implemented

a virtual network that relays UDP datagrams through a

relay thread. The relay thread drops UDP datagrams based

on given scenarios. Naturally, I have implemented tests

that randomly drop UDP datagrams. I also comprehensively

cover patterns involving handshake packet loss, something

that is apt to cause problems, such as tests that drop the

client’s first packet and tests that drop the second.

■ h3spec

Tests can easily miss error cases. For HTTP/2, h2spec*5

is an excellent test tool for checking if servers can handle

error cases. I realized that I could easily test error cases

by creating hooks for the Haskell QUIC library. One of the

hooks is shown below.

When transport parameters are created, this hook converts

one of the parameters from one value to another. An error

case can be created by converting to a value that causes

an error. Based on this idea, I have released a tool called

h3spec*6 for testing error cases against QUIC or HTTP/3

servers. At present, it provides 32 QUIC error tests and

16 HTTP/3 error tests. h3spec has been used to test the

Haskell QUIC library as well as other implementations, and

it has thus played a role in making implementations more

stable.

■ QUIC tracker

QUIC tracker is a service that executes a range of tests on public

servers once a day and publishes the results. I registered

our public server for the service and found a lot of bugs.

I was eventually able to pass all test cases except for two

unsupported items.

3.15 Acknowledgments
I would like to thank the following individuals. Kazuho

Oku gave me the idea for generating connected sockets.

Tatsuhiro Tsujikawa discussed the migration API with me.

Robin Marx taught me all about qlog and qvis.

Kazu Yamamoto

Head of Development Group, Research Laboratory, IIJ Innovation Institute Inc.
Dr. Yamamoto is interested in applying the concurrent technology of the Haskell programming language to network programming.
He pens the “QUIC wo Yukkuri Kaisetsu” [QUIC at an Easy Pace] series in Japanese on the IIJ Engineers Blog.

onTransportParametersCreated :: Parameters -> Parameters

29

©Internet Initiative Japan Inc. All rights reserved.
 IIJ-MKTG020-0050

Internet Initiative Japan Inc.

Address: Iidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, Japan
Email: info@iij.ad.jp URL: https://www.iij.ad.jp/en/

N
ov

em
be

r 2
02

1
Vo

l.5
2

About Internet Initiative Japan Inc. (IIJ)

IIJ was established in 1992, mainly by a group of engineers who
had been involved in research and development activities related
to the Internet, under the concept of promoting the widespread
use of the Internet in Japan.
IIJ currently operates one of the largest Internet backbones
in Japan, manages Internet infrastructures, and provides
comprehensive high-quality system environments (including
Internet access, systems integration, and outsourcing services,
etc.) to high-end business users including the government and
other public offices and financial institutions.
In addition, IIJ actively shares knowledge accumulated through
service development and Internet backbone operation, and
is making efforts to expand the Internet used as a social
infrastructure.

The copyright of this document remains in Internet Initiative Japan Inc.

(“IIJ”) and the document is protected under the Copyright Law of Japan

and treaty provisions. You are prohibited to reproduce, modify, or make

the public transmission of or otherwise whole or a part of this document

without IIJ’s prior written permission. Although the content of this

document is paid careful attention to, IIJ does not warrant the accuracy and

usefulness of the information in this document.

	Executive Summary
	1.	Periodic Observation Report
	1.1	Overview
	1.2	About the Data
	1.3	Users’ Daily Usage
	1.4	Usage by Port
	1.5	Conclusion

	2.	Focused Research (1)
	2.1	Introduction
	2.2	Credentials and Verifiable Credentials
	2.3	Illustration of Verifiable Credentials in Use
	2.4	The Verifiable Credentials Ecosystem
	2.5	 How Verifiable Credentials and Traditional Digital Certificates Differ
	2.6	 Developments in Verifiable Credentials
	2.7	Verifiable Credentials Implementations
	2.8	The Future of Verifiable Credentials
	2.9	Conclusion

	3.	Focused Research (2)
	3.1	QUIC and HTTP/3
	3.2	Why Implement it in Haskell?
	3.3	QUIC Streams and Connections
	3.4	Accepting Connections on a Server
	3.5	Threads that Make up a Connection
	3.6	Connected Sockets
	3.7	Closing Connections
	3.8	TLS Handshake
	3.9	Migration
	3.10	ACK Processing Algorithmn
	3.11	Reassembling Streams
	3.12	Flow Control
	3.13	Loss Detection and Congestion Control
	3.14	Testing
	3.15	Acknowledgments

