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Executive Summary

In September 2021, the Japanese government launched its new Digital Agency. The Digital Agency’s website*1 says that 
it will rapidly build Japan’s public-private infrastructure over the next five years to create a society in which the benefits 
of digitalization reach everyone. The agency’s organizational chart also bears out its keen focus on digitalizing public 
services as well as the services of government ministries and agencies.

We might not give too much thought to government services until our own time comes to use them, and indeed, when I 
moved a few years ago, I was at times struck by the sheer amount of paperwork I had to complete and how inconvenient 
it all was. And amid the current COVID-19 pandemic, the popular press has been critical of the government, claiming that 
the payment of government handouts and the rollout of vaccines could have proceeded more smoothly if greater progress 
had been made on the use of information & communication technology (ICT) in government services.

How does the Japanese government’s use of ICT stack up against the rest of the world? The United Nations’ global 
e-government rankings*2, released in July 2020, put Japan in 14th place out of the 193 UN Member States, while the 
“International Digital Government Rankings”*3 released by the Institute of Digital Government at Waseda University 
in September 2020 have Japan in seventh place out of 64 leading ICT nations. No doubt it depends on the evaluation 
methodology, but it seems fair to say that while the Japanese government does not have a commanding lead over the 
rest of the world when it comes to digitalization, it is not as far behind as public criticism might suggest.

That said, promoting the use of ICT and pursuing digital transformation initiatives across society as a whole will be key to 
improving the lives of all. The Internet is crucial infrastructure for making this happen, and at IIJ, we hope to contribute 
toward such digital transformation efforts through our role in supporting the Internet.

The IIR introduces the wide range of technology that IIJ researches and develops, comprising periodic observation reports 
that provide an outline of various data IIJ obtains through the daily operation of services, as well as focused research 
examining specific areas of technology.

Our periodic observation report in Chapter 1 provides our analysis of IIJ’s fixed broadband and mobile traffic. We are 
now in the second year marked by major changes in Internet traffic due to the COVID-19 pandemic. The results of 
this analysis elucidate how changes in Internet traffic reflect societal developments and changes in technology, including 
the impact of behavioral restrictions on traffic, the shift from PPPoE to IPoE in fixed broadband, the shift from HTTP to 
HTTPS, and the rise of the QUIC protocol, as also discussed in Chapter 3.

The first focused research report, in Chapter 2, looks at Verifiable Credentials (VCs), which lie at the core of self-sovereign 
identity (SSI), and discusses BBS+ signatures, which make VCs possible. As digital transformation initiatives advance, SII 
is likely to become increasingly important as it allows users to independently manage their own digital identities. We also 
discussed SSI in IIR Vol. 43 (https://www.iij.ad.jp/en/dev/iir/043.html), and the development of technologies to enable SSI 
has progressed in the two years since then. The report in Chapter 2 also touches on the differences between traditional 
digital certificates and VCs, VC implementations from Japan and abroad, standardization, and future challenges.

The second focused research report, in Chapter 3, discusses an effort to implement QUIC, which was recently standardized 
in RFC 9000, in Haskell. As well as participating in the discussion of new protocols, the author actually implements them 
and tests interoperability with other implementations, putting a lot of effort into ensuring a high level of completeness 
when it comes time to use those implementations. Many implementations use event-driven programming, but by taking 
advantage of Haskell’s features and adopting a threaded programming approach, the author has been able to test the 
specifications from a different perspective than other implementers. The specific implementation points covered in this 
chapter help to provide a deeper understanding of the QUIC protocol.

Through activities such as these, IIJ strives to improve and develop its services on a daily basis while maintaining the 
stability of the Internet. We will continue to provide a variety of services and solutions that our customers can take full 
advantage of as infrastructure for their corporate activities.

*1 Digital Agency, “What is the Digital Agency?” (https://www.digital.go.jp/en).

*2 Department of Economic and Social Affairs, United Nations, “UN E-Government Survey 2020” (https://publicadministration.un.org/

egovkb/en-us/Reports/UN-E-Government-Survey-2020).

*3 Institute of Digital Government at Waseda University, “International Digital Government Rankings” (https://idg-waseda.jp/ranking.htm).

Junichi Shimagami

Mr. Shimagami is a Managing Director and the CTO of IIJ. His interest in the Internet led to him joining IIJ in September 
1996. After engaging in the design and construction of the A-Bone Asia region network spearheaded by IIJ, as well 
as IIJ’s backbone network, he was put in charge of IIJ network services. Since 2015, he has been responsible for 
network, cloud, and security technology across the board as CTO. In April 2017, he became chairman of the Telecom 
Services Association of Japan MVNO Council.
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*1 Kenjiro Cho. Broadband Traffic Report: The Impact of COVID-19. Vol.48. pp4-9. September 2020.

*2 Kenjiro Cho. Broadband Traffic Report: Moderate Growth in Traffic Volume Ongoing. Vol. 44. pp4-9. September 2019.

*3 Kenjiro Cho. Broadband Traffic Report: Download Growth Slows for a Second Year Running. Vol. 40. pp4-9. September 2018.

*4 Kenjiro Cho. Broadband Traffic Report: Traffic Growth Slows to a Degree. Internet Infrastructure Review. Vol. 36. pp4-9. September 2017.

*5 Akimichi Ogawa and Satoshi Kubota. Tettei Kaisetsu v6 Plus. Lambda Note. January 2020 (https://www.jpne.co.jp/books/v6plus/, in Japanese).

1. Periodic Observation Report

Broadband Traffic Report: 
COVID-19’s Impact in its 2nd Year

1.1 Overview
In this report, we analyze traffic over the broadband 

access services operated by IIJ and present the results 

each year*1*2*3*4. Here, we again report on changes in traffic 

trends over the past year, based on daily user traffic and 

usage by port.

As in 2020, home Internet usage again increased under 

the COVID-19 pandemic, with broadband traffic staying 

in an uptrend. Meanwhile, with people venturing outdoors 

less, mobile usage has been largely range-bound.

Figure 1 graphs the overall average monthly traffic trends 

for IIJ’s fixed broadband services and mobile services. IN/

OUT indicates the direction from the ISP perspective. IN 

represents uploads from users, and OUT represents user 

downloads. Because we cannot disclose specific traffic 

numbers, we have normalized the data, setting the OUT 

observations for January 2020 for both services to 1.

Broadband services traffic surged from March to May 2020, 

when COVID-19 cases were starting to ramp up in Japan. 

It fell slightly in June after Japan’s state of emergency was 

lifted but turned up again from August. Over the past year, 

broadband IN traffic increased 20% and OUT traffic 

increased 23%. While these are smaller increases than 

the year-earlier figures of 43% and 34%, the growth 

rates do appear to have returned to their former levels. 

Mobile services traffic, meanwhile, remained range-bound 

overall during this period amid lower rates of use outside 

the home/office, despite an increase in the use of services 

for remote work. Over the past year, mobile IN traffic 

increased 39% and OUT traffic fell 1%. A year earlier, IN 

was up 28% and OUT down 7%.

The broadband figures include IPv6 IPoE traffic. IPv6 

traffic on IIJ’s broadband services comprises both IPoE 

and PPPoE traffic*5. As of June 2021, IPoE accounted for 

almost a third of all traffic, at 31% of IN and 30% of 

OUT broadband traffic overall, year-on-year increases of 

7 and 10 percentage points, respectively. With PPPoE 

congestion having become quite noticeable amid COVID-

19, users are increasingly shifting to IPoE, and use of IPoE 

thus continues to rise.

Figure 1: Monthly Broadband and Mobile Traffic
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Figure 3: Hourly Average Broadband Traffic on Weekends

Figure 2: Hourly Average Broadband Traffic on Weekdays

We now look at broadband traffic by time of day on weekdays 

and weekends amid COVID-19. Traffic volume here is the 

sum of PPPoE and IPoE. Figures 2 and 3 show traffic for 

the following seven weeks: the week of February 25, 2020, 

before Japan’s school closures; the week of April 20, 

2020, corresponding to Japan’s first state of emergency; 

the week of June 22, 2020, after the state of emergency 

was lifted; the week of August 31, 2020, when the second 

COVID-19 wave was easing; the week of January 18, 2021, 

the second state of emergency; the week of March 22, 

2021, after Tokyo’s state of emergency was lifted; and the 

week of July 5, which marked the start of the fifth wave 

of COVID-19, involving variant strains. We graph hourly 

average traffic volume figures for each of these weeks, 

partitioned into weekdays (Monday–Friday, excluding public 

holidays) and weekends (Saturday/Sunday). The lines in 

the lower part of each plot represent uploads, but here we 

focus on download volume.

First, we look at weekday traffic. Comparing February and 

April 2020 to see the impact of the first state of emergency, 

we see that traffic was up substantially in the daytime and 

that it also increased during evening peak hours. When the 

state of emergency was lifted in June, the additional daytime 

traffic fell to less than half what it had been, but peak hours 

saw almost no decline. Daytime traffic subsequently edged 

upward but did not return to its April 2020 levels until March 

of this year. Daytime traffic fell a little in July, which seems 

to reflect that schools were in session and remote work had 

declined a bit. Focusing on the 20:00–22:00 peak hours, 

we see a fairly consistent increase.

Weekend traffic, meanwhile, shows less variability 

than weekdays. Weather has a greater impact than school 

or remote work on the proportion of people at home on 

weekends. For example, poor weather on January 23 and 

24 this year pushed home Internet usage upward; and on 

March 27 and 28, the cherry blossoms were in full bloom 

west of the Kanto region, resulting in more people going 

out and thus lower traffic levels. Traffic during nighttime 

peak hours is roughly the same as on weekdays.
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We estimated overall usage volumes by multiplying 

observed volumes with the reciprocal of the sampling rate.

IIJ provides both fiber-optic and DSL broadband services, 

but fiber-optic access now accounts for the vast majority of 

use. Of users observed in 2021, 99% were using fiber-optic 

connections.

1.3 Users’ Daily Usage
First, we examine daily usage volumes for broadband and 

mobile users from several angles. Daily usage indicates the 

average daily usage calculated from a week’s worth of data 

for each user.

Since our 2019 report, we use daily usage data only on 

services provided to individuals. The distribution is heavily 

distorted if we include enterprise services, where usage 

patterns are highly varied. So to form a picture of overall 

usage trends, we determined that using only the individual 

data would yield more generally applicable, easily interpretable 

conclusions. Note that the analysis of usage by port in the 

next section does include enterprise data because of the 

difficulty of distinguishing between individual and enterprise 

usage.

Figures 4 and 5 show the average daily usage distributions 

(probability density functions) for broadband and mobile users. 

Each compares data for 2020 and 2021 split into IN (upload) 

and OUT (download), with user traffic volume plotted along 

the X-axis and user frequency along the Y-axis. The X-axis 

Note that IPoE traffic is not included in the following analysis, 

as detailed data is not available because we use Internet 

Multifeed Co.’s transix service for IPoE.

1.2 About the Data
As with previous reports, for broadband traffic, our analysis 

uses data sampled using Sampled NetFlow from the routers 

that accommodate the fiber-optic and DSL broadband 

customers of our personal and enterprise broadband access 

services. For mobile traffic, we use access gateway billing 

information to determine usage volumes for personal and 

enterprise mobile services, and we use Sampled NetFlow 

data from the routers used to accommodate these services 

to determine the ports used.

Because traffic trends differ between weekdays and 

weekends, we analyze traffic in one-week chunks. In this 

report, we look at data for the week of May 31 – June 

6, 2021, and compare those data with data for the week 

of June 1–7, 2020, which we analyzed in the previous 

edition of this report.

Results are aggregated by subscription for broadband 

traffic, and by phone number for mobile traffic as some 

subscriptions cover multiple phone numbers. The usage 

volume for each broadband user was obtained by matching 

the IP address assigned to users with the IP addresses 

observed. We gathered statistical information by sampling 

packets using NetFlow. The sampling rate was set to around 

1/8,192, taking into account router performance and load. 

Figure 5: Daily Mobile User Traffic Volume Distribution
Comparison of 2020 and 2021

Figure 4: Daily Broadband User Traffic Volume Distribution
Comparison of 2020 and 2021
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shows volumes between 10KB (104) and 100GB (1011) using 

a logarithmic scale. Most users fall within the 100GB (1011) 

range, with a few exceptions.

The IN and OUT broadband traffic distributions are close to 

a log-normal distribution, which looks like a normal distribution 

on a semi-log plot. A linear plot would show a long-tailed 

distribution, with the peak close to the left and a slow 

gradual decrease toward the right. The OUT distribution 

is further to the right than the IN distribution, indicating 

that download volume is more than an order of magnitude 

larger than upload volume. The peaks of both the IN and 

OUT distributions for 2021 are further to the right than 

the peaks of the 2020 distributions, indicating that overall 

user traffic volumes are increasing. Compared with what 

we have seen in the past, there is almost no change in the 

distributions this time around, which is also evident from 

the lack of growth in total PPPoE traffic.

The peak of the OUT distribution, which appears toward 

the right in the plot, has been steadily moving rightward 

over the past few years, but heavy-user usage levels have 

not increased much, and as a result, the distribution is 

becoming less symmetric. The IN distribution on the left, 

meanwhile, is generally symmetric and closer to a log-normal 

distribution.

Similarly, the peaks of the mobile distributions in Figure 5 

have moved slightly to the right, indicating that overall 

traffic has increased, albeit only slightly. Mobile usage 

volumes are significantly lower than for broadband, and 

limits on mobile data usage mean that heavy users, which 

fall on the right-hand side of the distribution, account for 

only a small proportion of the total, so the distribution is 

asymmetric. There are also no extremely heavy users. The 

variability in each user’s daily usage volume is higher for 

mobile than for broadband owing to there being users who 

only use mobile data when out of the home/office as well 

as limits on mobile data. Hence, the daily average for a 

week’s worth of data shows less variability between users 

than the data for individual days. Plotting the distributions 

for individual days in the same way results in slightly lower 

peaks and correspondingly higher tails on both sides, but 

the basic shape and modal values of the distribution remain 

largely unchanged.

Table 1 shows trends in the mean and median daily traffic 

values for broadband users as well as the mode (the most 

frequent value, which represents the peak of the distribution). 

When the peak is slightly off the center of the distribu-

tion, the distribution is adjusted to bring the mode toward 

the center. All of the values increased this time around. 

Comparing 2020 and 2021, the IN mode rose from 158MB 

Table 1: Trends in Mean and Mode 
of Broadband Users’ Daily Traffic Volume

IN(MB/day) OUT(MB/day)

Year Mean Median MedianMode Mean Mode

2015

2016

2007

2008

2009

2010

2011

2012

2013

2014

2017

2018

2019

2020

2021

351

361

436

490

561

442

398

320

348

364

391

428

479

609

684

45

63

5

6

6

7

9

16

28

13

79

79

89

158

200

32

48

5

6

6

7

9

13

21

11

63

66

75

122

136

1399

1808

718

807

973

878

931

928

1124

945

2285

2664

2986

3810

4225

708

1000

56

79

100

126

200

355

501

251

1259

1585

1995

3162

3981

443

726

59

75

91

111

144

208

311

900

1083

1187

1638

1875

176
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to 200MB and the OUT mode rose from 3,162MB to 

3,981MB, translating into growth factors of 1.3 for both 

IN and OUT.

Meanwhile, because the means are influenced by heavy 

users (on the right-hand side of the distribution), they are 

significantly higher than the corresponding modes, with 

the IN mean at 684MB and the OUT mean at 4,225MB 

in 2021. The 2020 means were 609MB and 3,810MB, 

respectively.

For mobile traffic, the mean and mode are close owing to 

the lack of heavy users. As Table 2 shows, the IN mean 

has fallen slightly while all other values are up. In 2021, 

the IN mode was 8MB and the OUT mode was 71MB, 

while the means were IN 10MB and OUT 86MB. The 2020 

modes were IN 7MB and OUT 63MB, and the means were 

IN 10MB and OUT 79MB.

Figures 6 and 7 plot per-user IN/OUT usage volumes for 

random samples of 5,000 users. The X-axis shows OUT 

(download volume) and the Y-axis shows IN (upload volume), 

with both using a logarithmic scale. Users with identical 

IN/OUT values fall on the diagonal.

The cluster spread out below and parallel to the diagonal 

in each of these plots represents typical users with download 

volumes an order of magnitude higher than upload volumes. 

For broadband traffic, there was previously a clearly 

recognizable cluster of heavy users spread out thinly about 

the upper right of the diagonal, but this is now no longer 

discernible. Variability between users in terms of usage 

levels and IN/OUT ratios is wide, indicating that there is 

a diverse range of usage styles. For mobile traffic, the 

pattern of OUT being an order of magnitude larger also 

applies, but usage volumes are lower than for broadband, 

and there is less variability between IN and OUT. For both 
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IN(MB/day) OUT(MB/day)

Year Mean Mode Mean MedianMedian Mode

2015 3.2 49.2 44.723.5

2016

4.5

2017 4.9 79.9 79.441.27.9

7.14.1 66.5 63.132.7

2018 8.95.4 83.8 79.444.3

2019 8.95.9 84.9 79.446.4

2020 7.14.5 79.4 63.135.1

2021

6.2

7.6

9.3

10.5

11.2

10.4

9.9 7.94.7 85.9 70.837.9

Table 2: Trends in Mean and Mode 
of Mobile Users’ Daily Traffic Volume

Figure 6: IN/OUT Usage for Each Broadband User Figure 7: IN/OUT Usage for Each Mobile User
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broadband and mobile, there is almost no difference between 

these plots and those for 2020.

Figures 8 and 9 show the complementary cumulative 

distribution of users’ daily traffic volume. On these log-log 

plots, the Y-axis values represent the proportion of users 

with daily usage levels greater than the corresponding 

X-axis values. These plots are an effective way of examining 

the distribution of heavy users. The linear-like decline 

toward the right-hand side of the plots indicates that the 

distributions are long-tailed and close to a power-law 

distribution. Heavy users appear to be distributed 

statistically and do not appear to constitute a separate, 

special class of user.

The broadband distributions are largely unchanged from 

last year. But on mobile, the bump observed at the bottom 

right of the IN distribution last year due to a heavy volume 

of uploads has disappeared, and the slope is now fairly 

linear.

Traffic is heavily skewed across users, such that a small 

proportion of users accounts for the majority of overall 

traffic volume. For example, the top 10% of broadband 

users account for 48% of total OUT and 76% of total IN 

traffic, while the top 1% of users account for 15% of OUT 

and 50% of IN traffic. The skew has not changed much 

from last year. As for mobile, the top 10% of users account 

for 48% of OUT and 49% of IN traffic, while the top 1% 

account for 12% of OUT and 16% of IN traffic. The skew 

here is also mostly unchanged from last year’s report.

1.4 Usage by Port
Next, we look at a breakdown of traffic and examine usage 

levels by port. Recently, it has become difficult to identify 

applications by port number. Many P2P applications use 

dynamic ports on both ends, and a large number of client/

server applications use port 80, which is assigned to 

HTTP, to avoid firewalls. Hence, generally speaking, when 

both parties are using a dynamic port numbered 1024 or 

higher, the traffic is likely to be from a P2P application, and 

when one of the parties is using a well-known port lower 

than 1024, the traffic is likely to be from a client/server 

application. In light of this, we take the lower of the source 

and destination port numbers when breaking down TCP 

and UDP usage volumes by port.

P
ro

ba
bi

lit
y 

D
is

tri
bu

tio
n

In
Out

10
-6

10
-5

10
-3

10
-1

10
-4

10
-2

10 0

Users’ Daily Traffic Volume (Bytes)

10
(100KB)

510
(10KB)

4 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11 10
(1TB)

12

Total（2021）

In
Out

Mobile(2021)

10
-6

10
-5

10
-3

10
-1

10
-4

10
-2

10 0

P
ro

ba
bi

lit
y 

D
is

tri
bu

tio
n

Users’ Daily Traffic Volume (Bytes)

10
(100KB)

510
(10KB)

4 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11 10
(1TB)

12

Figure 8: Complementary Cumulative Distribution 
of Broadband Users’ Daily Traffic Volume

Figure 9: Complementary Cumulative Distribution 
of Mobile Users’ Daily Traffic Volume
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Table 3 shows the percentage breakdown of broadband 

users’ usage by port over the past five years. In 2021, 72% 

of all traffic was over TCP connections, down 5 percentage 

points vs. 2020. The proportion of traffic over port 443 

(HTTPS) was 54%, a 2-point increase from last year. The 

proportion of traffic over port 80 (HTTP) fell from 17% to 

12%. The figure for UDP port 443, which is used by the 

QUIC protocol, rose from 11% to 16%, so HTTP declined 

by roughly the amount that QUIC increased.

TCP dynamic port traffic, which has been in decline, fell 

to 6% in 2021. Individual dynamic port numbers account 

for only a tiny portion, with the most commonly used port 

31000 only making up 0.6%. Port 1935, which is used by 

Flash Player, makes up 0.2%, but almost all other traffic 

is VPN related.

Table 4 shows the percentage breakdown by port for 

mobile users. The figures are close to those for broadband 

on the whole. This is likely because apps similar to those 

for PC platforms are now also used on smartphones, and 

because the proportion of broadband usage on smartphones 

is rising.

Figure 10 compares overall broadband traffic for key port 

categories across the course of the week from which 

observations were drawn in 2020 and 2021. We break 

the data into four port buckets: TCP ports 80 and 443, 

dynamic ports (1024 and up), and UDP port 443. 

The data are normalized so that peak overall traffic 

volume on the plot is 1. Comparing 2020 and 2021, we 

see that UDP port 443 has become more prominent than 

TCP port 80 in 2021. The increase in weekday daytime 

traffic observed in 2020 is down a little. The overall peak 

is between 19:00 and 23:00.

Figure 11 shows the trend for TCP ports 80 and 443 and 

UDP port 443, which account for the bulk of mobile traffic. 

protocol　port

year

TCP     

　(< 1024)

　443(https)

　80(http)

　22(ssh)

　(>= 1024)

　993(imaps)

　31000

　8080

　1935(rtmp)

UDP

　443(https)

　8801

ESP

IP-ENCAP

　4500(nat-t)

GRE

ICMP

2017

(%)

83.9

43.3

28.4

0.1

72.9

0.2

11.0

0.1

0.3

1.1

10.5

3.8

0.0

0.2
5.1

0.1

0.3

0.0

2019

(%)

81.2

51.9

73.3

20.4

0.2

0.3

7.9

0.2

0.5

0.3

14.1

7.8

0.0

0.3
4.4

0.1

0.2

0.0

2018

(%)

78.5

40.7

68.5

26.5

0.1

0.2

10.0

0.1

0.3

0.7

16.4

10.0

0.0

0.2
4.8

0.1

0.2

0.0

2020

(%)

77.2

52.4

70.5

17.2

0.2

0.2

6.7

0.4

0.4

0.4

19.4

10.5

1.1

0.6
3.2

0.1

0.1

0.0

2021

(%)

71.9

53.5

65.8

11.6

0.2

0.1

6.1

0.6

0.4

0.2

24.5

15.9

0.9

0.8
3.3

0.2

0.1

0.0

protocol　port

year

TCP     

　443(https)

　80(http)

ESP
GRE

ICMP

　993(imaps)

　1935(rtmp)

UDP
　443(https)

　8801

　3480

　12222

　4500(nat-t)

2017

(%)

84.4

53.0

27.0

0.4
0.1

0.0

2019

(%)

76.9

55.6

10.3

5.8
0.0

0.0

2018

(%)

76.6

52.8

16.7

0.4

0.2

11.4
7.5

0.3

0.1

17.3
8.3

0.3

0.1

19.4
10.6

0.0 0.00.0

0.0 0.00.0

0.1 3.42.3

0.2 3.04.5

3.9
0.1

0.0

2020

(%)

75.5

50.7

7.4

6.4
0.1

0.0

0.2

0.1

18.0
9.3

1.4

0.4

0.8

1.8

2021

(%)

70.3

44.4

5.0

5.8
0.1

0.0

0.2

0.1

23.8
16.3

0.7

0.3

0.2

3.7

Table 4: Mobile Users’ Usage by Port

Table 3: Broadband Users’ Usage by Port
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Comparing the figures with 2020, UDP port 443 has risen 

further here also, and the lunchtime peak sticks out a 

bit more. When compared with broadband, we note that 

mobile traffic levels remain high throughout the day, from 

morning through night. The plot shows that usage times 

differ from those for broadband, with three separate mobile 

traffic peaks occurring on weekdays: morning commute, 

lunch break, and evening from 17:00 to 22:00.

1.5 Conclusion
Looking back on the situation during the COVID-19 pandemic 

over the past year and a half, weekday daytime broadband 

traffic increased substantially from May to March of 2020 

as the brakes were put on human movement and a greater 

proportion of people stayed at home. But excluding this 

period, traffic volume looks to be rising steadily largely in 

line with an underlying growth curve. So, although traffic has 

seen an annual increase of around 40% due to COVID-19, 

the increase has not been so dramatic as initially feared, 

and while we do observe ups and downs due to changes in 

stay-at-home rates associated with COVID case numbers, 

traffic continues to grow steadily overall.

Also, in contrast with PPPoE, which is subject to bottlenecks 

and other constraints, IPoE traffic is growing apace and 

driving growth in broadband traffic overall. The use of IPoE 

can be expected to continue rising ahead.

Figure 10: Broadband Users’ Port Usage Over a Week
2020 (top) and 2021 (bottom)

Figure 11: Mobile Users’ Port Usage Over a Week
2020 (top) and 2021 (bottom)
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Verifiable Credentials and BBS+ Signatures

*1 ISO/IEC 24760-1 defines identity as “a set of attributes related to an entity”.

*2 Internet Infrastructure Review Vol. 43, “2. Blockchain-based Identity Management and Distribution” (https://www.iij.ad.jp/en/dev/iir/043.html).

*3 Alex Preukschat and Drummond Reed, “Self-Sovereign Identity - Decentralized digital identity and verifiable credentials”, Manning Publications, May 2021 (https://

www.manning.com/books/self-sovereign-identity).

*4 Kengo Suzuki and Kento Goro, “Identity wa dare no mono? Hyperledger Indy & Aries de jitsugen suru bunsan identity” [Who do identities belong to? Decentralized 

identities made possible by Hyperledger Indy & Aries] Impress R&D, May 2021, (https://nextpublishing.jp/isbn/9784844379447, in Japanese).

*5 Internet Infrastructure Review Vol. 26 “1.4.3 ID Management Technology” (https://www.iij.ad.jp/en/dev/iir/026.html).

*6 Verifiable Credentials Data Model 1.0 (https://www.w3.org/TR/vc-data-model).

*7 A driver’s license is first and foremost a credential to show that you are qualified to drive. Driver’s licenses are also commonly used as a form of ID since they 

contain a set of key attributes, such as name, address, gender, date of birth, and face photo. The government has also identified integrating driver’s licenses with 

Japan’s Individual Number Cards as a goal.

2.1 Introduction
The concept of self-sovereign identity (SSI) is drawing 

attention as a new type of digital identity. A digital identity 

represents who you are in digital space and consists of a 

collection of attributes such as name, date of birth, gender, 

and email address*1. Digital identities have traditionally 

been managed by applications, enterprise systems, or 

identity providers such as GAFAM. The idea of SSI is to 

allow the owner of an identity to independently manage 

the identity.

Two years have passed since we discussed SSI in IIR Vol. 43*2. 

Over that time, the technologies and mechanisms needed 

to make SSI a reality have continued to advance; this includes 

Verifiable Credentials (VC), Decentralized Identifiers 

(DIDs), digital agents, digital wallets, and governance 

frameworks. These technologies are comprehensively 

explained in other documents*3*4, and here we limit our focus 

to providing an overview of VCs, which can be considered 

the core of SSI. We also briefly discuss the implementation 

of VCs using BBS+ signatures, which have been attracting 

interest in the community since last year.

2.2 Credentials and Verifiable Credentials
The term “credentials” can mean various things depending 

on context*5, but here we refer to the World Wide Web 

Consortium (W3C) specification*6 and use the term to 

mean “a set of one or more claims about a subject made 

by an issuer”. For example, a driver’s license is a type of 

credential in that it is a set of claims (e.g., the holder’s 

name, address, date of birth, photograph, types of vehicles 

that can be driven) that the issuer (e.g., department of 

motor vehicles) makes about the subject (i.e., the license 

holder).

Credentials allow us to have the credential issuer vouch 

for who we are. For example, if I were trying to open a 

bank account, the bank teller would not trust me if I simply 

claimed, without any evidence, that “I am a male living 

in ABC City and my birthdate is XYZ”. Showing my driver 

license, which serves as my credentials, in this case means 

that the license issuer certifies my claims, and this enhances 

the credibility of my claims*7.

For a claim made using credentials to be accepted, however, 

the credentials must be credible to the party to which the 

claim is made. So who issued the credentials? Have the 

credentials been rewritten or forged by someone else? Have 

they expired or been revoked? Only once these things are 

verified and validated can the information in the credentials 

be accepted.

With physical credentials, the verifier looks at the information 

on the document and determines its authenticity by checking 

any special printing, such as watermarks, if present. This 

sort of verification process is often difficult and requires 

specialized skill.

VCs are digitalized credentials, so they can be verified 

by a computer. This does not mean that the credentials 

document is simply scanned into a digital image. Digital 

signatures are used to verify the issuer’s identity and 

whether or not the document has been tampered with. 

This approach is based on the results of cryptographic 

research into what’s known as anonymous credentials or 

attribute-based credentials, and it can also accommodate 

privacy-enhancing mechanisms using zero-knowledge 

proof technology.

2. Focused Research (1)
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Figure 1: Illustration of Providing Credentials

2.3 Illustration of Verifiable Credentials in Use
To provide a more tangible idea of how VCs are used, let’s 

imagine a world in which certificate of residence (a common 

identification document in Japan) are represented as VCs 

and consider what happens from issuance through to the 

use of these credentials.

Mr. A, who lives in X City, decides to sign up for a family 

account on a service provided by Company B. Company 

B offers a discount to residents of X City. To receive the 

discount, Mr. A needs to show that he and his family live 

in X City. 

So Mr. A visits the X City residential services office and 

asks for a VC version of his certificate of residence.

X City residential services verify Mr. A’s identity using an 

appropriate method. They may, for example, ask him to 

present a photo ID in person or to provide other VCs online.

Upon confirming Mr. A’s identity, X City residential services 

obtain the attributes of Mr. A and his family from the 

resident information database and issue a VC, which is 

equivalent to a certificate of residence and contains the 

attributes of Mr. A and family, including address, name, date 

of birth, gender, and date resident status was obtained. Mr. 

A stores the VC in his smartphone.

Mr. A then applies to Company B for the service. By presenting 

the VC issued by X City to Company B, Mr. A can show 

that he and his family reside in X City.

Both Mr. A and Company B want to exchange only a 

minimum of personal information. So, Mr. A presents the 

credentials to Company B with only the address of Mr. A 

and family disclosed (i.e., selective disclosure) and the rest 

of the information hidden (name, gender, date of birth, and 

date of residential status). Figure 1 illustrates this. In this 

example, we assume that Company B has specified what 

attributes it needs (address), but it is also possible for Mr. 

A to choose which attributes are provided.

Company B verifies the credentials and confirms that Mr. A 

and his family reside in X City, as asserted by X City. This 

allows Mr. A and his family to use Company B’s service at 

a discounted price.

Note that the VC Mr. A received from X City is not specific to 

Company B’s services. For example, Mr. A can subsequently 

show some other company—call it Company C—that he 

lives in X City or perhaps that members of his family are 

over 20 years old. It is also envisioned that, in addition to 

using a single VC, people will be able to combine multiple 

VCs to provide the desired attributes.

Provide Cancel

Provide attributes

Certificate of residence
  Issued by X City, Z Prefecture on Jul 30, 2020

This information is 
requested

Not provided
Name

A

Address

Y-cho, X City, 

Z Prefecture

Gender

Male
Not provided

Not providedDate of birth

Company B’s service requests your information. 
Please review your information
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*8 Stephen Curran, “Why Distributed Ledger Technology (DLT) for Identity?”, Hyperledger (https://www.hyperledger.org/blog/2021/04/21/why-distributed-led-

ger-technology-dlt-for-identity).

2.4 The Verifiable Credentials Ecosystem
In the example above, we encountered X City, which issued 

the VC, Mr. A, who received the VC and presented it 

to another party, and Company B, which verified the 

credentials presented. The actors in a VC scenario and 

the relationships between them are called the Verifiable 

Credentials ecosystem, which can be laid out as in Figure 2.

The issuer is the person or organization that issues the VC. 

In the previous example, this is X City.

The holder receives the VC issued by the issuer and stores 

it in his/her smartphone or other device. The holder then 

presents the VC to verifiers as needed. In the example 

above, Mr. A was the holder of a VC version of his certificate 

of residence.

The subject is an entity about which the VC makes claims. 

In most cases, the subject is the same as the holder, but 

they can be different entities in some cases, such as when 

the subject is an infant and the holder is the infant’s guardian. 

In the example above, the subject encompasses Mr. A as 

well as his family members.

The verifier is the person or organization that verifies the 

VC presented by the holder and uses the information it 

contains. In the example above, this is Company B and 

Company C.

The Verifiable Data Registry is data storage used by 

the issuers, holders, and verifiers. It records information 

required for performing verification, such as the issuer’s 

identifier and public key and credential revocation registries. 

Anyone can refer to this information, but it cannot be altered. 

As such, it is often implemented on a blockchain.

VCs and self-sovereign identity are often mentioned in 

conjunction with blockchain, and it is common to think 

that VC itself is recorded on a blockchain, but this is a 

misconception. The Verifiable Data registry is a registry 

that anyone can refer but not alter, so it is not considered 

an appropriate place for VCs containing personal data*8. 

As the previous example illustrates, the two major VC 

events occur when the issuer issues credentials and when 

the holder presents them to a verifier. The holder asks the 

issuer to issue credentials and is thus issued with a VC that 

contains the subject’s attributes. The holder saves this on 

her smartphone or other device and later presents only the 

necessary parts to verifiers, who then verify the credentials. 

The result is that the verifier is able to confirm that the subject 

has the attributes as certified by the issuer.

Figure 2: Verifiable Credentials Ecosystem

Issuance Presentation

Subject

Verifiable Data Registry

Refers to identifiers / public keys

Registers identifiers / public keys Refers to identifiers / public keys

Presents credentialsIssues credentials

Credentials saved

Issuer VerifierHolder
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2.5  How Verifiable Credentials and Traditional 
Digital Certificates Differ

Credentials that use digital signatures are actually not a 

new concept. Digital certificates are constantly being verified 

when we communicate via HTTPS on a daily basis. OpenID 

Connect, which is often used for digital identity federation, 

also stores identity information in digitally signed ID tokens 

to facilitate verification. In that sense, these digital certificates 

and tokens also serve as verifiable credentials.

So how do VCs and traditional digital certificates differ? 

We see three main points. Not all VCs check all of these 

points, but we seem to call credentials VCs when at least 

one of these characteristics is present.

1. Has a mechanism for providing only the minimum 

of data required

2. A holder is always present between the issuer and 

the verifier

3. Uses a decentralized identifier (DID)

Let’s start with the first point. Many VCs have a mechanism 

for minimizing the data that the credential holder discloses. 

One of the most notable is the use of a cryptographic technique 

called zero-knowledge proofs. A zero-knowledge proof 

allows the holder to present only the attributes in credential 

that the verifier requires while keeping other attributes 

hidden. It is also possible to disclose only the fact that the 

hidden attributes satisfy certain conditions. For example, 

the holder can hide the name, address, and date of birth on 

a driver’s license while also showing that he is qualified to 

drive a standard automobile and that he is at least 20 years 

of age. This sort of mechanism is key to protecting the privacy 

of the holder and subject.

The second point also has to do with protecting the holder’s 

privacy. If we consider the issuer to be the Identity Provider 

(IdP) and the verifier to be the Relying Party (RP), then the 

VC mechanism can be seen as similar to existing identity 

federation mechanisms such as OpenID Connect and SAML. 

VCs differ from these standards in that they do not allow 

direct interaction between the issuer and the verifier; there 

is always a holder between the two. This aspect of VCs 

is one reason they play a central role in SSI. It is useful 

because the holder may not want the issuer and verifiers 

to know his every move in terms of what information he 

has provided to what sort of providers and when.

The third point relates to decentralized identifiers (DIDs), 

which, along with VCs, are the cornerstone of SSI. DIDs 

are identifiers that can refer to people, organizations, and 

things, and they are associated with a public key that is 

needed to verify the digital signature. The association 

between the DID and the public key is guaranteed in a 

decentralized manner using blockchain or the like without 

the need for a trusted third party such as a registration 

authority. One does not need to use DIDs to realize the 

benefits of VCs, but they are often used together to unlock 

the advantages of both in tandem.
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*9 CCI (COVID-19 Credentials Initiative) (https://www.covidcreds.org/).

*10 LFPH (Linux Foundation Public Health) (https://www.lfph.io/).

*11 Introducing the Global COVID Certificate Network (GCCN) (https://www.lfph.io/2021/06/08/gccn/). 

*12 Vaccination Credential Initiative (VCI) (https://vaccinationcredential.org/).

*13 European Digital Identity - European Commission (https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en).

*14 Kiva Protocol, built on Hyperledger Indy, Ursa and Aries. Sierra Leone has adopted this protocol and built a platform that allows people perform identity verification 

in around 11 seconds for the purpose of small-scale financing. (https://www.hyperledger.org/blog/2021/01/20/kiva-protocol-built-on-hyperledger-indy-ursa-and-ar-

ies-powers-africas-first-decentralized-national-id-system). 

*15 IATA - Travel Pass Initiative (https://www.iata.org/en/programs/passenger/travel-pass/).

*16 “Keio University Commences Demonstration Experiment of Next-Generation Digital Identity Platform: To Issue Certificates of Enrollment and Certificates of Expect-

ed Graduation to Smartphone Applications” (https://www.keio.ac.jp/en/press-releases/2020/Nov/13/49-76286/).

*17 Trusted Web White Paper ver 1.0 (https://www.kantei.go.jp/jp/singi/digitalmarket/trusted_web/pdf/documents_210331-2.pdf, in Japanese). 

*18 Hyperledger Indy (https://www.hyperledger.org/use/hyperledger-indy).

*19 Hyperledger Aries (https://www.hyperledger.org/use/aries).

*20 Hyperledger Ursa (https://www.hyperledger.org/use/ursa).

*21 Identity verification solutions - Microsoft Security (https://www.microsoft.com/en-us/security/business/identity-access-management/verifiable-credentials).

The use of VCs is also expanding to include other areas, 

with examples being eKYC (online know your customer) 

for microfinance by the NPO Kiva*14 and the IATA Travel 

Pass*15 from the International Air Transport Association 

(IATA).

In Japan, Keio University, together with five Japanese 

companies and in cooperation with Microsoft, commenced 

demonstration testing of student identity system that uses 

VCs and DIDs in October 2020*16. And in a March 2021 

white paper, the Trusted Web Promotion Council mentions  

VCs as one of the building blocks for realizing trustable 

communication*17.

A slew of products supporting such use cases is being 

developed. The Linux Foundation’s Hyperledger project 

is heavily engaged in developing a range of technologies, 

with a particular focus on Hyperledger Indy*18, a distributed 

ledger for providing DIDs, Hyperledger Aries*19, an agent 

for handling VCs, and Hyperledger Ursa*20, a cryptographic 

library for use by these projects. Azure AD, Microsoft’s 

Identity as a Service (IDaaS) offering, also includes VC 

functionality and has been in public preview since April 

2021*21.

2.6  Developments in Verifiable Credentials
Vaccination certificate implementations that use these 

characteristics of VCs and other initiatives are being 

trialled.

In April 2020, the COVID-19 Credentials Initiative (CCI) 

was launched to enable the application of VCs to facilitate 

the interoperable use of privacy-preserving digital credentials 

for COVID-19-related purposes*9. The CCI has now joined 

Linux Foundation Public Health (LFPH)*10. In June 2021, 

LFPH launched the Global COVID Certificate Network 

(GCCN), a cross-border initiative for the exchange of 

vaccination certificates*11. Meanwhile, in January 2021, 

Microsoft, Oracle, Salesforce, and others also launched 

the COVID-19 Credentials Initiative (CCI), which is working 

to digitalized vaccine certificates based on VCs*12.

Similarly, the European Digital Identity Framework unveiled 

by the European Commission in June 2021 put forward the 

concept of a Digital Identity Wallet usable by all citizens 

and residents of EU member states. Although it does not 

specifically mention the use of VCs and SSI, the heavy 

influence of VCs is apparent given that the model and use 

cases comprise issuers, holders, and verifiers and that 

holders can selectively disclose attributes*13.
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*22 A Path Towards Interoperability: CCI Released a Paper on Different Flavors of Verifiable Credentials (https://www.lfph.io/2021/02/11/cci-verifiable-credentials-fla-

vors-and-interoperability-paper/).

*23 Internet Identity Workshop (https://internetidentityworkshop.com/).

*24 Why the Verifiable Credentials Community Should Converge on BBS+ (https://www.evernym.com/blog/bbs-verifiable-credentials/).

*25 BBS+ Signatures 2020, W3C Community Group Draft Report (https://w3c-ccg.github.io/ldp-bbs2020/).

*26 DIF - Applied Crypto Working Group (https://identity.foundation/working-groups/crypto.html).

*27 mattrglobal/jsonld-signatures-bbs: A linked data proof suite for BBS+ signatures (https://github.com/mattrglobal/jsonld-signatures-bbs/).

*28 Jan Camenisch and Anna Lysyanskaya, “Signature Schemes and Anonymous Credentials from Bilinear Maps”, CRYPTO 2004 (http://dx.doi.org/10.1007/978-3-

540-28628-8_4).

*29 Man Ho Au, Willy Susilo, and Yi Mu, “Constant-Size Dynamic k-TAA”, SCN 2006 (http://dx.doi.org/10.1007/11832072_8).

*30 Jan Camenisch, Manu Drijvers, and Anja Lehmann, “Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited”, Trust 2016 (http://dx.doi.

org/10.1007/978-3-319-45572-3_1).

*31 Dan Boneh, Xavier Boyen, and Hovav Shacham, “Short Group Signatures”, CRYPTO 2004 (http://dx.doi.org/10.1007/978-3-540-28628-8_3).

2.7 Verifiable Credentials Implementations
While W3C is working to standardize VCs, this standardiza-

tion effort is focused on the data model. Specific details 

vary widely from implementation to implementation. An 

explanatory document*22 by CCI and LFPH refers to these 

variations in implementation as “flavors”.

Here, we look at JSON-LD ZKP with BBS+, a flavor that 

has attracted a lot of attention at the Internet Identity 

Workshop (IIW)*23 and in related circles. JSON-LD ZKP with 

BBS+ is a relatively new scheme that was unveiled by New 

Zealand-based company MATTR at the April 2020 IIW. It 

has been well received by the community*24, and non-MATTR 

engineers are now also involved in developing and discussing 

the scheme’s standard as part of the W3C Credentials 

Community Group (CCG)*25 and the Decentralized Identity 

Foundation’s (DIF) Crypto Working Group*26. It is being 

developed in the open on GitHub*27, where we have also 

made a few contributions.

Key aspects of JSON-LD ZKP with BBS+ are that it uses 

the JSON-LD format to encode credentials, and it uses 

BBS+ signatures, which work well with zero-knowledge 

proofs, as the digital signature scheme.

The JSON-LD specification is not as well known as JWTs 

(JSON Web Tokens) in a digital identity context, but it 

is widely used in the Semantic Web and Search Engine 

Optimization (SEO) domains. An advantage of JSON-LD is 

that it incorporates Linked Data elements into JSON data 

and can thereby uniquely identify the terms used to describe 

data using URIs while retaining the compactness of JSON. 

Metadata in JSON-LD format is embedded in many websites 

these days. Figure 3 shows an example of a credential 

represented in JSON-LD.

BBS+ signatures are multi-message digital signatures*28*29*30 

that extend BBS group signatures*31. They are a type of 

elliptic curve cryptography that uses an operation called 

{

    "@context": [                               // JSON-LD context

        "https://www.w3.org/2018/credentials/v1",

        "https://schema.org",

        ...

    ],

    "id": "http://example.edu/creds/1234",      // Credential identifier

    "type": "VerifiableCredential",             // Credential type

    "issuer": "https://example.edu/issuers/1",  // Credential issuer

    "issuanceDate": "2021-06-22T00:00:00Z",     // Credential issue date

    "expirationDate": "2022-06-22T00:00:00Z",   // Credential expiry date

    "credentialSubject": {

        "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",  // Subject identifier

        "type": "Person",                                 // Subject type

        "birthDate": "1970-01-01",                        // Subject DOB

        "name": "John Smith",                             // Subject name

        ...                                               // Other attributes

    },

    "proof": { ... }                            // Signature value needed for verification etc.

}

Figure 3: Example of JSON-LD Credentials
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pairing. They differ from the commonly used RSA and 

ECDSA signatures in that it is possible to sign a list of multiple 

pieces of data (rather than a single piece of data). The 

structure also makes it easy to combine with zero-knowledge 

proof technology, so you can verify a signature as being 

valid while still hiding some elements in the list of signed 

data, and you can hide selected elements while still providing 

proof that they meet some criteria.

JSON-LD ZKP with BBS+ canonicalizes credentials represented 

in JSON-LD into a data form called statements using LD 

canonicalization. BBS+ signatures are then used to sign and 

verify the list of statements. For example, the JSON-LD 

credentials in Figure 3 are converted into a list of statements 

as shown in Figure 4 and then signed. Using BBS+ signatures 

to sign the list of statements allows you to control whether 

each particular statement is shown or not. It is not yet 

possible, however, to provide high-level proofs showing that a 

particular value within a statement (name, date of birth, etc.) 

satisfies certain conditions (e.g., date of birth falls within a 

certain range) while keeping that value hidden.

2.8 The Future of Verifiable Credentials
Some issues remain to be resolved before VCs and JSON-LD 

ZKP with BBS+ can be put to practical use. Here, we go 

over three key issues and look at approaches and efforts 

aimed at solving them.

■ Issue 1: Interoperability with existing digital identity 

technologies

The first challenge is ensuring interoperability between the 

new concept that VCs represent and existing digital identity 

specifications and products. The OpenID Foundation (OIDF) 

is looking at addressing this by using the Self-Issued OpenID 

Provider (SIOP) framework, which is originally part of OpenID 

Connect, to handle VCs on top of OpenID Connect. Engineers 

from MATTR, the original proponent of JSON-LD ZKP with 

BBS+, are involved in this work.

■ Issue 2: Standardizing the various specifications

The JSON-LD ZKP with BBS+ and LD canonicalization 

specifications mentioned above are still being discussed and 

not yet finalized as standard specifications. In the case of 

JSON-LD ZKP with BBS+, the W3C CCG is developing the 

specification and, in parallel with this, DIF’s Crypto Working 

Group is also holding discussions, as mentioned earlier. The 

details are being standardized as W3C specifications as 

they are finalized, with future details to be discussed and 

worked out by the DIF’s Crypto Working Group. For example, 

the means of making high-level proofs possible, such as 

showing that a person is 20 years or older while keeping 

date of birth hidden, is on the DIF Crypto Working Group’s 

agenda for discussion. As for LD canonicalization, the 

W3C’s Linked Data Signatures Working Group currently 

being set up is expected to pursue work on this in the form 

<did:example:ebfeb1f712ebc6f1c276e12ec21> <http://schema.org/birthDate> "1970-01-01"^^<http://schema.org/Date> .

<did:example:ebfeb1f712ebc6f1c276e12ec21> <http://schema.org/name> "John Smith" .

<did:example:ebfeb1f712ebc6f1c276e12ec21> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org/Person> .

<http://example.edu/creds/1234> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <https://www.w3.org/2018/credentials#VerifiableCredential> .

<http://example.edu/creds/1234> <https://www.w3.org/2018/credentials#credentialSubject> <did:example:ebfeb1f712ebc6f1c276e12ec21> .

...

Figure 4: List of Signed Statements (Excerpt). Each Line is Called a Statement.
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*32 Linked Data Signatures Working Group Charter (https://w3c.github.io/lds-wg-charter/index.html).

*33 Internet Infrastructure Review Vol. 49, “Trends in Post-Quantum Cryptography—2020” (https://www.iij.ad.jp/en/dev/iir/049.html).

of RDF Dataset Canonicalization (RDC) and Linked Data 

Integrity (LDI). As of this writing (August 2021), the aim 

according to the Proposed Charter*32 is to begin work in 

September 2021 and produce a W3C Recommendation by 

September 2023, or within two years.

■ Issue 3: Resilience to quantum computing

The third issue to highlight, and a long-term one, is that of 

post-quantum cryptography, which we also covered back 

in IIR Vol. 49*33. The security of BBS+ signatures relies 

on the hardness of the discrete logarithm problem on 

elliptic curves. It is known that quantum computers will be 

able to efficiently solve this problem. So, unfortunately, 

BBS+ signatures and JSON-LD ZKP with BBS+, which 

uses them, are not quantum resistant. The same goes 

for the Camenisch-Lysyanskaya (CL) signatures used in 

Hyperledger Indy as well as the RSA, ECDSA, and EdDSA 

signatures often used in JWTs. Post-quantum anonymous 

credentials based on lattice-based signature schemes 

and Zero-Knowledge Scalable Transparent Arguments of 

Knowledge (ZK-STARK) have also been proposed, but much 

room for improvement, including performance enhancements, 

remains before they become practically viable.

2.9 Conclusion
We have looked at the current status of and future issues 

for VCs, a topic that continues to gain attention, and one 

of the implementations in the form of the JSON-LD ZKP 

with BBS+ flavor. Personally, I expect VCs to be used as 

and when appropriate rather than completely replacing 

conventional digital certificates and ID tokens. The real 

value of VCs is evident in situations where the privacy 

of people, organizations, and things must be protected, 

particularly when there is a need to minimize what data 

is provided. And VCs that use JSON-LD make possible 

credential statements with strong expressive power and 

interoperability, facilitating digital identity bridging across 

a wide range of organizations and industries. Many issues 

remain to be resolved before VCs are used in real-world 

applications, but we will be keeping an eye on efforts 

to standardize and popularize their use, and we hope to 

make our own contributions toward the development of 

the community in this area as well as society as a whole.

Dan Yamamoto

Senior Engineer, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ.
Dr. Yamamoto began his current role in 2021. He investigates and researches digital identity and information security issues.
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3. Focused Research (2)

3.2 Why Implement it in Haskell?
As with my implementations of HTTP/2 and TLS 1.3, I am 

implementing QUIC and HTTP/3 in the Haskell programming 

language. My reasons for choosing Haskell are as follows.

• Rich data types allow for concise problem repre-

sentation, and strong type checking can detect 

many coding errors.

• Lightweight threads are provided as standard, 

enabling threaded programming with better code 

readability than with event-driven programming 

and a small overhead when switching and creat-

ing threads, where state management tends to 

be cumbersome (any reference to threads below 

means lightweight threads).

• Many data types are immutable and can be safely 

shared between threads. 

• STM (Software Transactional Memory) is provided 

as standard, enabling threaded programming without 

deadlocks.

Most of the QUIC implementations by other teams use 

event-driven programming, whereas I use threaded pro-

gramming. I feel that threaded programming not only 

improves code readability but also allows me to test 

specifications from a different perspective than other 

implementers.

Below, I describe specific implementation points.

One of IIJ’s goals is to contribute to the development of 

the Internet, and one way our lab does this is through its 

involvement in standardizing new protocols. For years, we 

have been helping to develop more complete specifications. 

Our work involves discussing new protocol specifications, 

implementing those specifications, and testing interopera-

bility with other implementations.

Since 2013, I have participated in the standardization of 

HTTP/2 and TLS 1.3. Over the last two and a half years, 

I have been involved in the standardization of QUIC and 

HTTP/3, which are closely related to these two protocols. In 

this report, I explain how I implemented QUIC and HTTP/3.

3.1 QUIC and HTTP/3
QUIC is a new transport protocol that uses UDP. It is 

defined as a large specification incorporating the following 

features.

• Reliability, flow control, and congestion control 

provided by TCP

• Multiplexing with asynchronous streams derived 

from HTTP/2 (stream fragmentation and reassembly)

• Security features provided by TLS 1.3 (key exchange, 

authentication of peers, encryption of data)

The basic units in QUIC are called packets. A packet can 

contain multiple units of data called frames. There are 

several types of frames: e.g., application data is stored in 

STREAM frames, and ACK (acknowledgement) infor-

mation is stored in ACK frames. HTTP as defined in the 

QUIC protocol is called HTTP/3.

Implementing QUIC in Haskell
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3.3 QUIC Streams and Connections
QUIC divides communications into streams in order to 

multiplex within a single connection. HTTP/2 uses streams 

for the same purpose, but while HTTP/2 streams can only 

carry HTTP requests and responses, QUIC streams can 

carry data for any application.

After working on a QUIC API for quite a while, I discovered 

the following abstractions.

• The role of QUIC connections corresponds to that 

of network I/O management handled by the OS.

• QUIC streams correspond to TCP connections.

TCP connections here means the simplest form of TCP 

connections that only exchange one piece content, as in 

HTTP/1.0. Viewing things from this angle, I realized that 

streams can be controlled with an API that mimics the 

socket API. Part of the current API appears below.

Haskell type annotations are separated by a right arrow. 

The return type is on the far right. The other parts of the 

type signature are the argument types. When IO appears 

to the left of the type, it means the method has side 

effects, such as input and output operations. When IO 

does not appear, the data type is immutable and has no 

side effects. () denotes that there is no return value, and 

ByteString is, of course, the byte string type. So, IO () 

means that there is no meaningful return value and that 

only the function’s side effects are of interest.

When implementing an HTTP/1.0 server in Haskell, the 

usual convention is to use a synchronous approach of 

starting one thread for each TCP connection from a client, 

reading a request, writing a response, and then terminating 

the thread. In HTTP/2, you need to manage multiple threads 

to enable multiplexing. When implementing HTTP/3, the 

QUIC library handles this multiplexing. So, when using the 

above API, it is possible to use the conventional synchronous 

approach of starting one thread per stream.

3.4 Accepting Connections on a Server
The type annotation of the function that starts a server is 

as follows.

That is, run takes a server configuration and a server 

application function (a function that receives a connection 

and does some processing, including input and output) as 

arguments. The Dispatcher thread launched by this function 

opens a listening (wildcard) socket for each network 

interface. When a new connection is accepted, the threads 

that make up the connection are started (see Section 3.5).

-- Abstract data type representing a stream

data Stream

-- Function for creating streams

stream :: Connection -> IO Stream

-- Function for closing streams

closeStream :: Stream -> IO () 

-- Function that accepts streams created by peers

acceptStream :: Connection -> IO Stream

-- Function that receives data from streams

recvStream :: Stream -> Int -> IO ByteString

-- Function for sending data to streams

sendStream :: Stream -> ByteString -> IO () 

run :: ServerConfig -> (Connection -> IO ()) -> IO ()
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There are six types of QUIC packets. The body of Initial 

packets, 0-RTT packets, Handshake packets, and 1-RTT 

packets is encrypted and the header is protected. The 

body of Version Negotiation packets and Retry packets 

is not encrypted, nor is the header protected. To analyze 

these packets in a consistent, unified manner, I devised a 

method of dividing the analysis into two stages.

(1) Parse parts of the header that are not protected 

(determine the packet type etc.)

(2) Decrypt encrypted text and remove header 

protection

Stage (1) is performed by the Dispatcher thread. The 

Dispatcher thread looks at the results of the analysis in 

(1) and creates a new connection if it is an Initial packet, 

or performs the migration process if it is an appropriate 

1-RTT packet (see Section 3.9). The specification does not 

allow the server to accept Version Negotiation packets or 

Retry packets, so these are simply discarded.

Stage (1) is also performed by the Reader thread described 

below, and (2) is performed by the Receiver thread de-

scribed below. The two-stage analysis idea has yielded a 

common data structure for the header information, resulting 

in more concise code than in earlier implementations.

3.5 Threads that Make up a Connection
When starting a new connection, the Dispatcher thread 

starts the main thread for that connection and asks it to 

create the connection. The main thread starts a group of 

threads that make up the connection, as shown in Figure 1, 

and waits for them to finish.

When the connection is created, a connected socket is 

created. So packets for this connection are read by the 

Reader thread, not the Dispatcher thread. The Reader 

performs the packet analysis in (1) above, and passes the 

parsed header information, protected header, and 

encrypted body to the Receiver thread through the queue 

(RecvQ).

The Receiver thread performs (2) above, extracts the 

packet’s frames, and processes each of them. STREAM 

frames are reassembled and passed to the Server thread 

through the queue (InputQ). When it receives an ACK 

frame, the Receiver thread deletes the corresponding 

information from the information-retransmission container 

(SentPackets) described in Section 3.10.

The Server thread is what invokes the server application 

function. The output is sent to the Sender thread through 

a queue (OutputQ). The Server thread is responsible for 

Callback configuration Key installation

Packet input

Packets deleted

Data resent

Receiver

InputQ OutputQ

RecvQ

TLS
handshaker

Server

Sender Resender

Reader Connected
socket

SentPacketsPacket output

Figure 1: Threads that Make up a Connection

22



3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

launching the TLS handshaker thread to perform key 

exchange and synchronize key availability timing before 

launching the application.

The Server thread is what invokes the server application 

function. The output is sent to the Sender thread through 

a queue (OutputQ). The Server thread is responsible for 

launching the TLS handshaker thread to perform key 

exchange and synchronize key availability timing before 

launching the application.

When the Resender thread detects a packet loss, it retrieves 

the relevant information from the information-retransmission 

container and resends it by putting it into the OutputQ.

STM is used for the queues and other data sharing, so 

these threads do not deadlock. If any one thread causes 

a fatal error, the entire thread group terminates. When this 

happens, resources are properly released and no leaks 

occur.

3.6 Connected Sockets
TCP lets you generate a connected socket from a wildcard 

socket using the accept() system call. The accept() 

system call cannot be used with UDP, however.

For example, suppose your server has a wildcard socket 

{UDP, 192.0.2.1, 443, *, *} and a client requesting a 

connection on 203.0.113.1:3456. The connected socket 

you want to generate is {UDP, 192.0.2.1, 443, 203.0.113.1, 

3456}. A simple way to do this is as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR 

option.

(2) Call the bind() system call with 192.0.2.1:443.

(3) Call the connect() system call with 203.0.113.1:3456.

Unfortunately, on BSD-based OSs, (2) causes an error. 

Linux allows (2), but race conditions can occur. These 

problems can be solved as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR 

option.

(2) Call the bind() system call with *:443.

(3) Call the connect() system call with 203.0.113.1:3456. 

In this case, the local address is set to 192.0.2.1.

This method works fine on many operating systems and 

does not cause race conditions. However, you need to be 

careful with privileges. Suppose that, in TCP, a process with 

root privileges creates a wildcard socket for a privileged 

port. Even if this process relinquishes root privileges 

for security reasons, the accept() system call can still be 

executed. Linux, however, requires the process to at least 

have the CAP_NET_BIND_SERVICE capability to generate a 

UDP-connected socket using the above method.
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3.7 Closing Connections
When using TCP with the socket API, a call to the close() 

system call by the application immediately returns control 

to the application, and the OS is then responsible for 

subsequently terminating TCP. The QUIC implementation 

also needs to enable this sort of control.

In my implementation, when the server (or client) application 

function terminates, all threads except the main thread 

terminate and unnecessary information is discarded. The 

main thread also starts a separate thread to handle the 

termination procedure with the minimum information needed 

to resend the CONNECTION _ CLOSE frame if need be.

In QUIC, an ACK is not returned for packets that contain a 

CONNECTION _ CLOSE frame. Once the peer has received 

a CONNECTION _ CLOSE frame, it immediately stops 

sending packets. So after sending the CONNECTION _

CLOSE frame, we wait a while to make sure that no more 

packets will arrive from the peer. If packets do arrive, this 

may indicate that the CONNECTION _ CLOSE frame has 

been lost, so the packet with the CONNECTION _ CLOSE 

frame is resent.

3.8 TLS Handshake
QUIC uses TLS 1.3 to perform handshakes to authenticate 

peers and exchange keys. TLS 1.3 messages are detached 

from the TLS record layer and stored in a simple data 

format in CRYPTO frames.

Figure 2 illustrates a full handshake in QUIC.

The client generates Initial keys based on the randomly 

generated connection ID. The TLS 1.3 ClientHello message 

is put into a CRYPTO frame, which is then put into the 

Initial packet, which is encrypted using the Initial key and 

sent. Note that privacy is not protected because Initial 

keys can also be generated on intermediate devices.

Upon receiving this, the server generates the Initial key 

and decrypts the Initial packet. Next, it generates the 

Handshake key and 1-RTT key based on the retrieved 

ClientHello. It then puts the generated ServerHello into the 

Initial packet, encrypts it with the Initial key, and sends it. 

Other TLS messages are put into Handshake packets and 

encrypted with the Handshake key before being sent.

Figure 2: Full QUIC Handshake

ClientHello

Initial packet

Finished

Handshake packet
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ServerHello

Initial packet

Client Server

EncryptedExtensions
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CertificateVerify
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A client that receives these packets generates the 

Handshake key and 1-RTT key. It also puts the generated 

Finished message into a Handshake packet, encrypts this 

with the Handshake key, and sends it. At this point, 1-RTT 

packets capable of storing application data can be sent.

For the second connection, the client can generate a 0-RTT 

key from the stored information and send an Initial packet 

followed by a 0-RTT packet capable of storing application 

data encrypted with the 0-RTT key.

I tried extending the TLS library in various ways to make 

TLS 1.3 features available in QUIC. Major modifications 

were needed in order to separate the record layer, but 

I figured out that starting a dedicated TLS thread was a 

good way of reusing the TLS library without making any 

further modifications beyond that.

The callback mechanism proved effective in keeping the 

state within the scope of the TLS library so that the Client/

Server threads do not have to manage the TLS 1.3 state. 

When a key is generated, a specified callback is used to 

install the key in the shared data area. And using STM 

makes it possible for other threads to gauge when the key 

was installed.

The server-side TLS handshaker thread terminates after 

sending a NewSessionTicket message in a 1-RTT packet. 

Meanwhile, the client-side TLS handshaker thread terminates 

after a set delay upon receiving a HANDSHAKE _ DONE 

frame.

3.9 Migration
Client IP addresses and port numbers can change. 

This happens, for example, when the network interface 

switches from mobile phone to Wi-Fi, or when the port 

mapping on a NAT gateway between the client and server 

changes. Connection migration is a feature for keeping 

connections alive in situations like this.

If the client IP address or port number changes, the server 

side of my implementation will receive 1-RTT packets on 

the listening socket. By examining the connection ID, it 

can determine that a migration has occurred rather than a 

bad packet.
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*1 Reference: J. Iyengar, M. Thomson, “QUIC:A UDP-Based Multiplexed and Secure Transport”, RFC 9000, 2021

In this case, the Dispatcher thread starts the Migrator 

thread (Figure 3), which creates a new connected socket, 

starts a Reader thread that will use that socket, and performs 

path validation. For details on path validation, see RFC 

9000*1.

Until a new connected socket is created, the Dispatcher 

thread passes any packets that arrive to the Migrator 

thread, and the Migrator thread passes them to the Receiver 

thread. It also closes the old connected socket after a set 

delay, thereby terminating the old Reader thread.

We will now look at how migration is handled on the client 

side, starting with the case in which connected sockets 

are used.

(1) Detect somehow that a new preferred network 

interface is available.

(2) Call the migration API. Once a new socket is 

created and the connect() system call is called, 

the OS sets the remote address and port based 

on the call’s arguments. The routing table is then 

searched using the remote address to find the 

network interface to which the route points. The 

IP address of that network interface is chosen as 

the socket’s local address. Local ports are chosen 

randomly.

(3) Use the connected socket that was created and 

send() to send packets.

The advantage of this method is that path validation can 

be performed in step (2), and the disadvantage is that 

OS-specific methods are needed for step (1). Meanwhile, 

another option is to use wildcard sockets.

• When sendto() is called, the OS sets the remote 

address and port based on the call’s arguments. 

The routing table is also searched using the remote 

address to find the network interface to which the 

route points. The IP address of that network interface 

is chosen as the socket’s local address. The local 

port is chosen randomly when sendto() is first 

called.

The advantage of this method is that migrations happen 

automatically without the need to keep track of the preferred 

network interface or provide a special migration API. The 

disadvantages are the cost and poor performance involved 

in sending packets and the lack of an opportune time for 

path validation.

As each method has its advantages and disadvantages, 

I plan to provide both so that either can be selected via the 

settings when launching a client.

Terminates

Creates

Receiver

RecvQ

Reader Reader

Connected
socket

Connected
socket

Migrator

MigQ
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Figure 3: Connection Migration Flow Chart
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3.10 ACK Processing Algorithmn
In QUIC, new packet numbers are used for retransmissions. 

Unlike TCP, which reuses sequence numbers when resending, 

QUIC has no ACK ambiguity problem. When a packet is 

resent, the packet number and ciphertext both change. 

For this reason, RFC 9000 refers to the “retransmission 

of information” rather than simply to the resending of 

packets.

In standard TCP, the ACK specifies the sequence number 

that should be delivered next, so it is not possible to determine 

whether other TCP segments have been delivered to the 

peer. QUIC ACK frames, meanwhile, can list packet numbers 

that have been received.

To enable the retransmission of information carried in 

packets that have been sent, an information-retransmission 

container is prepared and the information stored therein at 

time of transmission. The following three operations can 

be performed with information-retransmission containers.

• When sending, insert information with the packed 

number as the key.

• When an ACK is received, delete the information 

with the packet number as the key.

• If no ACK is returned after a set delay, retrieve 

and delete the information from the container and 

retransmit it.

A common data structure in Haskell providing this function-

ality is the PSQ (Priority Search Queue). We specify the 

packet number as the key, the transmission time as the 

priority, and the information as the value.

When I implemented the information-retransmission container 

with PSQs, I noticed that performance would drop signifi-

cantly at times. In a normal implementation, for example, say 

that ACKs are returned as follows.

That is, the implementation processes ACKs in response 

to ACKs and dynamically manages which packet numbers 

need to be ACK’d. At one point, however, Firefox Nightly 

returned the following ACKs.

ACKs in response to ACKs are not processed, so unnecessary 

packet numbers are not deleted. The specification permits 

this form of ACK. Denoting the size of the PSQ as n and 

the number of packet numbers specified in the ACK as m, 

the complexity of the entire delete operation is O(m log n). 

When m becomes large, as with the Firefox Nightly build 

I encountered, the delete operation becomes very costly.

I realized that predicates could be used to solve this problem. 

A list of packet numbers like [4,5,7,8,9], for instance, is 

represented in an ACK frame in the form of ranges like so: 

[(4,5),(7,9)]. This can be converted into a predicate as 

follows.

[0,1,2,3]

[0,1,2,3,4,5,6,7]

[0,1,2,3,4,5,6,7,8,9,10,11]

[0,1,2,3]

[4,5,6,7]

[8,9,10,11]
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*2 Reference: J. Iyengar, I. Swett, “QUIC Loss Detection and Congestion Control”, RFC 9002, 2021

*3 Reference: R. Marx, “QUIC and HTTP/3 event definitions for qlog”, Internet-Draft, 2020

*4 qvis, “Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!” (https://qvis.quictools.info/).

Haskell provides as standard a data structure called finger 

trees (FingerTree), a sequence representation that is 

easily manipulable at both ends, like a bidirectional list. 

Finger trees have an operation for splitting themselves into 

a finger tree that contains only elements matching a 

predicate and a finger tree holding the non-matching 

elements, which runs in O(n) time. So using finger trees 

and predicate-based splitting instead of PSQs, I was able 

to reduce the computational overhead when ACKs are 

received.

3.11 Reassembling Streams
QUIC packets do not span multiple IP packets. That is, 

they are not fragmented or reassembled at the IP level. 

Data within streams, on the other hand, can span multiple 

QUIC packets. So the sender needs to split the stream data 

into appropriately sized fragments, and the receiver needs 

to reassemble it.

When a STREAM frame arrives, the fragment is inserted 

into a reassembly container. Then, if there is a continuous 

set of fragments starting at the expected offset, they are 

removed and put into the recvStream queue. Hence, 

the reassembly container has insert and retrieve & delete 

operations.

In the old implementation, I used a one-way list for the 

reassembly container. Inserts and retrieve & delete opera-

tions both ran in O(n) time. When I profiled data transfers 

in a production environment, I found stream reassembly to 

be a bottleneck.

This prompted me to adopt a different data structure for the 

reassembly container: a skew heap populated with finger 

trees. Elements can be prepended or appended to a finger 

tree in O(1) time to represent a continuous series of fragments. 

Computation complexity is reduced: inserts take O(log n) 

and retrieve & delete operations take O(n) time.

3.12 Flow Control
Flow control is a mechanism whereby senders limit the volume 

of packets they send to within the bounds of what the receiver 

can handle. QUIC uses a scheme in which receivers tell 

senders how much data they can receive (credit). This 

is often conflated with congestion control, described in 

Section 3.13, but it is a separate mechanism.

In my implementation, flow control is done at the stream 

API level.

• sendStream sends data within the bounds allowed 

by the peer, and if the amount exceeds the limit, it 

waits for credit from the peer.

• recvStream assumes that the application will consume 

this data and sends credit for the amount of data 

received to the peer.

3.13 Loss Detection and Congestion Control
QUIC loss detection and congestion control are defined 

in RFC 9002*2. Loss detection uses both ACK-based and 

probe timeout-based methods. And congestion control 

uses an algorithm based on NewReno. I implemented the 

pseudocode given in the RFC faithfully in Haskell. In the 

process of doing so, I discovered, and reported, a number of 

inconsistencies in the specifications. In recognition of this, 

the name of this article’s author (Kazu Yamamoto) has been 

added to the RFC 9002 contributors list.

Loss detection and congestion control logs are exported in 

qlog format*3 and fed into the qvis*4 visualization suite to 

monitor the program’s operation and find errors.

predicate :: PlainPacket -> Bool

predicate pkt = (4 <= n && n <= 5) || (7 <= n && n <= 9)

  where

    n = packetNumber pkt
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*5 h2spec, “A conformance testing tool for HTTP/2 implementation” (https://github.com/summerwind/h2spec).

*6 h3spec, “Test tool for error cases of QUIC and HTTP/3” (https://github.com/kazu-yamamoto/h3spec).

3.14 Testing
My QUIC library and HTTP/3 library implement a variety 

of unit tests. In this section, I discuss the use of some 

noteworthy unit tests and external tests.

■ Loss detection

To test if loss detection is working correctly, I implemented 

a virtual network that relays UDP datagrams through a 

relay thread. The relay thread drops UDP datagrams based 

on given scenarios. Naturally, I have implemented tests 

that randomly drop UDP datagrams. I also comprehensively 

cover patterns involving handshake packet loss, something 

that is apt to cause problems, such as tests that drop the 

client’s first packet and tests that drop the second.

■ h3spec

Tests can easily miss error cases. For HTTP/2, h2spec*5 

is an excellent test tool for checking if servers can handle 

error cases. I realized that I could easily test error cases 

by creating hooks for the Haskell QUIC library. One of the 

hooks is shown below.

When transport parameters are created, this hook converts 

one of the parameters from one value to another. An error 

case can be created by converting to a value that causes 

an error. Based on this idea, I have released a tool called 

h3spec*6 for testing error cases against QUIC or HTTP/3 

servers. At present, it provides 32 QUIC error tests and 

16 HTTP/3 error tests. h3spec has been used to test the 

Haskell QUIC library as well as other implementations, and 

it has thus played a role in making implementations more 

stable.

■ QUIC tracker

QUIC tracker is a service that executes a range of tests on public 

servers once a day and publishes the results. I registered 

our public server for the service and found a lot of bugs. 

I was eventually able to pass all test cases except for two 

unsupported items.

3.15 Acknowledgments
I would like to thank the following individuals. Kazuho 

Oku gave me the idea for generating connected sockets. 

Tatsuhiro Tsujikawa discussed the migration API with me. 

Robin Marx taught me all about qlog and qvis.

Kazu Yamamoto

Head of Development Group, Research Laboratory, IIJ Innovation Institute Inc.
Dr. Yamamoto is interested in applying the concurrent technology of the Haskell programming language to network programming.
He pens the “QUIC wo Yukkuri Kaisetsu” [QUIC at an Easy Pace] series in Japanese on the IIJ Engineers Blog.

onTransportParametersCreated :: Parameters -> Parameters

29



©Internet Initiative Japan Inc. All rights reserved.
   IIJ-MKTG020-0050

Internet Initiative Japan Inc.

Address: Iidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, Japan
Email: info@iij.ad.jp URL: https://www.iij.ad.jp/en/

N
ov

em
be

r 2
02

1 
Vo

l.5
2

About Internet Initiative Japan Inc. (IIJ)

IIJ was established in 1992, mainly by a group of engineers who 
had been involved in research and development activities related 
to the Internet, under the concept of promoting the widespread 
use of the Internet in Japan.
IIJ currently operates one of the largest Internet backbones 
in Japan, manages Internet infrastructures, and provides 
comprehensive high-quality system environments (including 
Internet access, systems integration, and outsourcing services, 
etc.) to high-end business users including the government and 
other public offices and financial institutions.
In addition, IIJ actively shares knowledge accumulated through 
service development and Internet backbone operation, and 
is making efforts to expand the Internet used as a social 
infrastructure.  

The copyright of this document remains in Internet Initiative Japan Inc.

(“IIJ”) and the document is protected under the Copyright Law of Japan 

and treaty provisions. You are prohibited to reproduce, modify, or make 

the public transmission of or otherwise whole or a part of this document 

without IIJ’s prior written permission. Although the content of this 

document is paid careful attention to, IIJ does not warrant the accuracy and 

usefulness of the information in this document.


	Executive Summary
	1.	Periodic Observation Report
	1.1	Overview
	1.2	About the Data
	1.3	Users’ Daily Usage
	1.4	Usage by Port
	1.5	Conclusion

	2.	Focused Research (1)
	2.1	Introduction
	2.2	Credentials and Verifiable Credentials
	2.3	Illustration of Verifiable Credentials in Use
	2.4	The Verifiable Credentials Ecosystem
	2.5	 How Verifiable Credentials and Traditional Digital Certificates Differ
	2.6	 Developments in Verifiable Credentials
	2.7	Verifiable Credentials Implementations
	2.8	The Future of Verifiable Credentials
	2.9	Conclusion

	3.	Focused Research (2)
	3.1	QUIC and HTTP/3
	3.2	Why Implement it in Haskell?
	3.3	QUIC Streams and Connections
	3.4	Accepting Connections on a Server
	3.5	Threads that Make up a Connection
	3.6	Connected Sockets
	3.7	Closing Connections
	3.8	TLS Handshake
	3.9	Migration
	3.10	ACK Processing Algorithmn
	3.11	Reassembling Streams
	3.12	Flow Control
	3.13	Loss Detection and Congestion Control
	3.14	Testing
	3.15	Acknowledgments


