
© Internet Initiative Japan Inc.

3. Focused Research (2)

3.2 Why Implement it in Haskell?
As with my implementations of HTTP/2 and TLS 1.3, I am

implementing QUIC and HTTP/3 in the Haskell programming

language. My reasons for choosing Haskell are as follows.

• Rich data types allow for concise problem repre-

sentation, and strong type checking can detect

many coding errors.

• Lightweight threads are provided as standard,

enabling threaded programming with better code

readability than with event-driven programming

and a small overhead when switching and creat-

ing threads, where state management tends to

be cumbersome (any reference to threads below

means lightweight threads).

• Many data types are immutable and can be safely

shared between threads.

• STM (Software Transactional Memory) is provided

as standard, enabling threaded programming without

deadlocks.

Most of the QUIC implementations by other teams use

event-driven programming, whereas I use threaded pro-

gramming. I feel that threaded programming not only

improves code readability but also allows me to test

specifications from a different perspective than other

implementers.

Below, I describe specific implementation points.

One of IIJ’s goals is to contribute to the development of

the Internet, and one way our lab does this is through its

involvement in standardizing new protocols. For years, we

have been helping to develop more complete specifications.

Our work involves discussing new protocol specifications,

implementing those specifications, and testing interopera-

bility with other implementations.

Since 2013, I have participated in the standardization of

HTTP/2 and TLS 1.3. Over the last two and a half years,

I have been involved in the standardization of QUIC and

HTTP/3, which are closely related to these two protocols. In

this report, I explain how I implemented QUIC and HTTP/3.

3.1 QUIC and HTTP/3
QUIC is a new transport protocol that uses UDP. It is

defined as a large specification incorporating the following

features.

• Reliability, flow control, and congestion control

provided by TCP

• Multiplexing with asynchronous streams derived

from HTTP/2 (stream fragmentation and reassembly)

• Security features provided by TLS 1.3 (key exchange,

authentication of peers, encryption of data)

The basic units in QUIC are called packets. A packet can

contain multiple units of data called frames. There are

several types of frames: e.g., application data is stored in

STREAM frames, and ACK (acknowledgement) infor-

mation is stored in ACK frames. HTTP as defined in the

QUIC protocol is called HTTP/3.

Implementing QUIC in Haskell

20

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

3.3 QUIC Streams and Connections
QUIC divides communications into streams in order to

multiplex within a single connection. HTTP/2 uses streams

for the same purpose, but while HTTP/2 streams can only

carry HTTP requests and responses, QUIC streams can

carry data for any application.

After working on a QUIC API for quite a while, I discovered

the following abstractions.

• The role of QUIC connections corresponds to that

of network I/O management handled by the OS.

• QUIC streams correspond to TCP connections.

TCP connections here means the simplest form of TCP

connections that only exchange one piece content, as in

HTTP/1.0. Viewing things from this angle, I realized that

streams can be controlled with an API that mimics the

socket API. Part of the current API appears below.

Haskell type annotations are separated by a right arrow.

The return type is on the far right. The other parts of the

type signature are the argument types. When IO appears

to the left of the type, it means the method has side

effects, such as input and output operations. When IO

does not appear, the data type is immutable and has no

side effects. () denotes that there is no return value, and

ByteString is, of course, the byte string type. So, IO ()

means that there is no meaningful return value and that

only the function’s side effects are of interest.

When implementing an HTTP/1.0 server in Haskell, the

usual convention is to use a synchronous approach of

starting one thread for each TCP connection from a client,

reading a request, writing a response, and then terminating

the thread. In HTTP/2, you need to manage multiple threads

to enable multiplexing. When implementing HTTP/3, the

QUIC library handles this multiplexing. So, when using the

above API, it is possible to use the conventional synchronous

approach of starting one thread per stream.

3.4 Accepting Connections on a Server
The type annotation of the function that starts a server is

as follows.

That is, run takes a server configuration and a server

application function (a function that receives a connection

and does some processing, including input and output) as

arguments. The Dispatcher thread launched by this function

opens a listening (wildcard) socket for each network

interface. When a new connection is accepted, the threads

that make up the connection are started (see Section 3.5).

-- Abstract data type representing a stream

data Stream

-- Function for creating streams

stream :: Connection -> IO Stream

-- Function for closing streams

closeStream :: Stream -> IO ()

-- Function that accepts streams created by peers

acceptStream :: Connection -> IO Stream

-- Function that receives data from streams

recvStream :: Stream -> Int -> IO ByteString

-- Function for sending data to streams

sendStream :: Stream -> ByteString -> IO ()

run :: ServerConfig -> (Connection -> IO ()) -> IO ()

21

© Internet Initiative Japan Inc.

There are six types of QUIC packets. The body of Initial

packets, 0-RTT packets, Handshake packets, and 1-RTT

packets is encrypted and the header is protected. The

body of Version Negotiation packets and Retry packets

is not encrypted, nor is the header protected. To analyze

these packets in a consistent, unified manner, I devised a

method of dividing the analysis into two stages.

(1) Parse parts of the header that are not protected

(determine the packet type etc.)

(2) Decrypt encrypted text and remove header

protection

Stage (1) is performed by the Dispatcher thread. The

Dispatcher thread looks at the results of the analysis in

(1) and creates a new connection if it is an Initial packet,

or performs the migration process if it is an appropriate

1-RTT packet (see Section 3.9). The specification does not

allow the server to accept Version Negotiation packets or

Retry packets, so these are simply discarded.

Stage (1) is also performed by the Reader thread described

below, and (2) is performed by the Receiver thread de-

scribed below. The two-stage analysis idea has yielded a

common data structure for the header information, resulting

in more concise code than in earlier implementations.

3.5 Threads that Make up a Connection
When starting a new connection, the Dispatcher thread

starts the main thread for that connection and asks it to

create the connection. The main thread starts a group of

threads that make up the connection, as shown in Figure 1,

and waits for them to finish.

When the connection is created, a connected socket is

created. So packets for this connection are read by the

Reader thread, not the Dispatcher thread. The Reader

performs the packet analysis in (1) above, and passes the

parsed header information, protected header, and

encrypted body to the Receiver thread through the queue

(RecvQ).

The Receiver thread performs (2) above, extracts the

packet’s frames, and processes each of them. STREAM

frames are reassembled and passed to the Server thread

through the queue (InputQ). When it receives an ACK

frame, the Receiver thread deletes the corresponding

information from the information-retransmission container

(SentPackets) described in Section 3.10.

The Server thread is what invokes the server application

function. The output is sent to the Sender thread through

a queue (OutputQ). The Server thread is responsible for

Callback configuration Key installation

Packet input

Packets deleted

Data resent

Receiver

InputQ OutputQ

RecvQ

TLS
handshaker

Server

Sender Resender

Reader Connected
socket

SentPacketsPacket output

Figure 1: Threads that Make up a Connection

22

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

launching the TLS handshaker thread to perform key

exchange and synchronize key availability timing before

launching the application.

The Server thread is what invokes the server application

function. The output is sent to the Sender thread through

a queue (OutputQ). The Server thread is responsible for

launching the TLS handshaker thread to perform key

exchange and synchronize key availability timing before

launching the application.

When the Resender thread detects a packet loss, it retrieves

the relevant information from the information-retransmission

container and resends it by putting it into the OutputQ.

STM is used for the queues and other data sharing, so

these threads do not deadlock. If any one thread causes

a fatal error, the entire thread group terminates. When this

happens, resources are properly released and no leaks

occur.

3.6 Connected Sockets
TCP lets you generate a connected socket from a wildcard

socket using the accept() system call. The accept()

system call cannot be used with UDP, however.

For example, suppose your server has a wildcard socket

{UDP, 192.0.2.1, 443, *, *} and a client requesting a

connection on 203.0.113.1:3456. The connected socket

you want to generate is {UDP, 192.0.2.1, 443, 203.0.113.1,

3456}. A simple way to do this is as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR

option.

(2) Call the bind() system call with 192.0.2.1:443.

(3) Call the connect() system call with 203.0.113.1:3456.

Unfortunately, on BSD-based OSs, (2) causes an error.

Linux allows (2), but race conditions can occur. These

problems can be solved as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR

option.

(2) Call the bind() system call with *:443.

(3) Call the connect() system call with 203.0.113.1:3456.

In this case, the local address is set to 192.0.2.1.

This method works fine on many operating systems and

does not cause race conditions. However, you need to be

careful with privileges. Suppose that, in TCP, a process with

root privileges creates a wildcard socket for a privileged

port. Even if this process relinquishes root privileges

for security reasons, the accept() system call can still be

executed. Linux, however, requires the process to at least

have the CAP_NET_BIND_SERVICE capability to generate a

UDP-connected socket using the above method.

23

© Internet Initiative Japan Inc.

3.7 Closing Connections
When using TCP with the socket API, a call to the close()

system call by the application immediately returns control

to the application, and the OS is then responsible for

subsequently terminating TCP. The QUIC implementation

also needs to enable this sort of control.

In my implementation, when the server (or client) application

function terminates, all threads except the main thread

terminate and unnecessary information is discarded. The

main thread also starts a separate thread to handle the

termination procedure with the minimum information needed

to resend the CONNECTION _ CLOSE frame if need be.

In QUIC, an ACK is not returned for packets that contain a

CONNECTION _ CLOSE frame. Once the peer has received

a CONNECTION _ CLOSE frame, it immediately stops

sending packets. So after sending the CONNECTION _

CLOSE frame, we wait a while to make sure that no more

packets will arrive from the peer. If packets do arrive, this

may indicate that the CONNECTION _ CLOSE frame has

been lost, so the packet with the CONNECTION _ CLOSE

frame is resent.

3.8 TLS Handshake
QUIC uses TLS 1.3 to perform handshakes to authenticate

peers and exchange keys. TLS 1.3 messages are detached

from the TLS record layer and stored in a simple data

format in CRYPTO frames.

Figure 2 illustrates a full handshake in QUIC.

The client generates Initial keys based on the randomly

generated connection ID. The TLS 1.3 ClientHello message

is put into a CRYPTO frame, which is then put into the

Initial packet, which is encrypted using the Initial key and

sent. Note that privacy is not protected because Initial

keys can also be generated on intermediate devices.

Upon receiving this, the server generates the Initial key

and decrypts the Initial packet. Next, it generates the

Handshake key and 1-RTT key based on the retrieved

ClientHello. It then puts the generated ServerHello into the

Initial packet, encrypts it with the Initial key, and sends it.

Other TLS messages are put into Handshake packets and

encrypted with the Handshake key before being sent.

Figure 2: Full QUIC Handshake

ClientHello

Initial packet

Finished

Handshake packet

Data

1-RTT packet

ServerHello

Initial packet

Client Server

EncryptedExtensions

Certificate

CertificateVerify

Finished

Handshake packet

24

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

A client that receives these packets generates the

Handshake key and 1-RTT key. It also puts the generated

Finished message into a Handshake packet, encrypts this

with the Handshake key, and sends it. At this point, 1-RTT

packets capable of storing application data can be sent.

For the second connection, the client can generate a 0-RTT

key from the stored information and send an Initial packet

followed by a 0-RTT packet capable of storing application

data encrypted with the 0-RTT key.

I tried extending the TLS library in various ways to make

TLS 1.3 features available in QUIC. Major modifications

were needed in order to separate the record layer, but

I figured out that starting a dedicated TLS thread was a

good way of reusing the TLS library without making any

further modifications beyond that.

The callback mechanism proved effective in keeping the

state within the scope of the TLS library so that the Client/

Server threads do not have to manage the TLS 1.3 state.

When a key is generated, a specified callback is used to

install the key in the shared data area. And using STM

makes it possible for other threads to gauge when the key

was installed.

The server-side TLS handshaker thread terminates after

sending a NewSessionTicket message in a 1-RTT packet.

Meanwhile, the client-side TLS handshaker thread terminates

after a set delay upon receiving a HANDSHAKE _ DONE

frame.

3.9 Migration
Client IP addresses and port numbers can change.

This happens, for example, when the network interface

switches from mobile phone to Wi-Fi, or when the port

mapping on a NAT gateway between the client and server

changes. Connection migration is a feature for keeping

connections alive in situations like this.

If the client IP address or port number changes, the server

side of my implementation will receive 1-RTT packets on

the listening socket. By examining the connection ID, it

can determine that a migration has occurred rather than a

bad packet.

25

© Internet Initiative Japan Inc.

*1 Reference: J. Iyengar, M. Thomson, “QUIC:A UDP-Based Multiplexed and Secure Transport”, RFC 9000, 2021

In this case, the Dispatcher thread starts the Migrator

thread (Figure 3), which creates a new connected socket,

starts a Reader thread that will use that socket, and performs

path validation. For details on path validation, see RFC

9000*1.

Until a new connected socket is created, the Dispatcher

thread passes any packets that arrive to the Migrator

thread, and the Migrator thread passes them to the Receiver

thread. It also closes the old connected socket after a set

delay, thereby terminating the old Reader thread.

We will now look at how migration is handled on the client

side, starting with the case in which connected sockets

are used.

(1) Detect somehow that a new preferred network

interface is available.

(2) Call the migration API. Once a new socket is

created and the connect() system call is called,

the OS sets the remote address and port based

on the call’s arguments. The routing table is then

searched using the remote address to find the

network interface to which the route points. The

IP address of that network interface is chosen as

the socket’s local address. Local ports are chosen

randomly.

(3) Use the connected socket that was created and

send() to send packets.

The advantage of this method is that path validation can

be performed in step (2), and the disadvantage is that

OS-specific methods are needed for step (1). Meanwhile,

another option is to use wildcard sockets.

• When sendto() is called, the OS sets the remote

address and port based on the call’s arguments.

The routing table is also searched using the remote

address to find the network interface to which the

route points. The IP address of that network interface

is chosen as the socket’s local address. The local

port is chosen randomly when sendto() is first

called.

The advantage of this method is that migrations happen

automatically without the need to keep track of the preferred

network interface or provide a special migration API. The

disadvantages are the cost and poor performance involved

in sending packets and the lack of an opportune time for

path validation.

As each method has its advantages and disadvantages,

I plan to provide both so that either can be selected via the

settings when launching a client.

Terminates

Creates

Receiver

RecvQ

Reader Reader

Connected
socket

Connected
socket

Migrator

MigQ

Dispatcher

Listening
socket

Figure 3: Connection Migration Flow Chart

26

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

3.10 ACK Processing Algorithmn
In QUIC, new packet numbers are used for retransmissions.

Unlike TCP, which reuses sequence numbers when resending,

QUIC has no ACK ambiguity problem. When a packet is

resent, the packet number and ciphertext both change.

For this reason, RFC 9000 refers to the “retransmission

of information” rather than simply to the resending of

packets.

In standard TCP, the ACK specifies the sequence number

that should be delivered next, so it is not possible to determine

whether other TCP segments have been delivered to the

peer. QUIC ACK frames, meanwhile, can list packet numbers

that have been received.

To enable the retransmission of information carried in

packets that have been sent, an information-retransmission

container is prepared and the information stored therein at

time of transmission. The following three operations can

be performed with information-retransmission containers.

• When sending, insert information with the packed

number as the key.

• When an ACK is received, delete the information

with the packet number as the key.

• If no ACK is returned after a set delay, retrieve

and delete the information from the container and

retransmit it.

A common data structure in Haskell providing this function-

ality is the PSQ (Priority Search Queue). We specify the

packet number as the key, the transmission time as the

priority, and the information as the value.

When I implemented the information-retransmission container

with PSQs, I noticed that performance would drop signifi-

cantly at times. In a normal implementation, for example, say

that ACKs are returned as follows.

That is, the implementation processes ACKs in response

to ACKs and dynamically manages which packet numbers

need to be ACK’d. At one point, however, Firefox Nightly

returned the following ACKs.

ACKs in response to ACKs are not processed, so unnecessary

packet numbers are not deleted. The specification permits

this form of ACK. Denoting the size of the PSQ as n and

the number of packet numbers specified in the ACK as m,

the complexity of the entire delete operation is O(m log n).

When m becomes large, as with the Firefox Nightly build

I encountered, the delete operation becomes very costly.

I realized that predicates could be used to solve this problem.

A list of packet numbers like [4,5,7,8,9], for instance, is

represented in an ACK frame in the form of ranges like so:

[(4,5),(7,9)]. This can be converted into a predicate as

follows.

[0,1,2,3]

[0,1,2,3,4,5,6,7]

[0,1,2,3,4,5,6,7,8,9,10,11]

[0,1,2,3]

[4,5,6,7]

[8,9,10,11]

27

© Internet Initiative Japan Inc.

*2 Reference: J. Iyengar, I. Swett, “QUIC Loss Detection and Congestion Control”, RFC 9002, 2021

*3 Reference: R. Marx, “QUIC and HTTP/3 event definitions for qlog”, Internet-Draft, 2020

*4 qvis, “Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!” (https://qvis.quictools.info/).

Haskell provides as standard a data structure called finger

trees (FingerTree), a sequence representation that is

easily manipulable at both ends, like a bidirectional list.

Finger trees have an operation for splitting themselves into

a finger tree that contains only elements matching a

predicate and a finger tree holding the non-matching

elements, which runs in O(n) time. So using finger trees

and predicate-based splitting instead of PSQs, I was able

to reduce the computational overhead when ACKs are

received.

3.11 Reassembling Streams
QUIC packets do not span multiple IP packets. That is,

they are not fragmented or reassembled at the IP level.

Data within streams, on the other hand, can span multiple

QUIC packets. So the sender needs to split the stream data

into appropriately sized fragments, and the receiver needs

to reassemble it.

When a STREAM frame arrives, the fragment is inserted

into a reassembly container. Then, if there is a continuous

set of fragments starting at the expected offset, they are

removed and put into the recvStream queue. Hence,

the reassembly container has insert and retrieve & delete

operations.

In the old implementation, I used a one-way list for the

reassembly container. Inserts and retrieve & delete opera-

tions both ran in O(n) time. When I profiled data transfers

in a production environment, I found stream reassembly to

be a bottleneck.

This prompted me to adopt a different data structure for the

reassembly container: a skew heap populated with finger

trees. Elements can be prepended or appended to a finger

tree in O(1) time to represent a continuous series of fragments.

Computation complexity is reduced: inserts take O(log n)

and retrieve & delete operations take O(n) time.

3.12 Flow Control
Flow control is a mechanism whereby senders limit the volume

of packets they send to within the bounds of what the receiver

can handle. QUIC uses a scheme in which receivers tell

senders how much data they can receive (credit). This

is often conflated with congestion control, described in

Section 3.13, but it is a separate mechanism.

In my implementation, flow control is done at the stream

API level.

• sendStream sends data within the bounds allowed

by the peer, and if the amount exceeds the limit, it

waits for credit from the peer.

• recvStream assumes that the application will consume

this data and sends credit for the amount of data

received to the peer.

3.13 Loss Detection and Congestion Control
QUIC loss detection and congestion control are defined

in RFC 9002*2. Loss detection uses both ACK-based and

probe timeout-based methods. And congestion control

uses an algorithm based on NewReno. I implemented the

pseudocode given in the RFC faithfully in Haskell. In the

process of doing so, I discovered, and reported, a number of

inconsistencies in the specifications. In recognition of this,

the name of this article’s author (Kazu Yamamoto) has been

added to the RFC 9002 contributors list.

Loss detection and congestion control logs are exported in

qlog format*3 and fed into the qvis*4 visualization suite to

monitor the program’s operation and find errors.

predicate :: PlainPacket -> Bool

predicate pkt = (4 <= n && n <= 5) || (7 <= n && n <= 9)

 where

 n = packetNumber pkt

28

3. Focused Research (2)

Vol. 52Nov.2021

© Internet Initiative Japan Inc.

*5 h2spec, “A conformance testing tool for HTTP/2 implementation” (https://github.com/summerwind/h2spec).

*6 h3spec, “Test tool for error cases of QUIC and HTTP/3” (https://github.com/kazu-yamamoto/h3spec).

3.14 Testing
My QUIC library and HTTP/3 library implement a variety

of unit tests. In this section, I discuss the use of some

noteworthy unit tests and external tests.

■ Loss detection

To test if loss detection is working correctly, I implemented

a virtual network that relays UDP datagrams through a

relay thread. The relay thread drops UDP datagrams based

on given scenarios. Naturally, I have implemented tests

that randomly drop UDP datagrams. I also comprehensively

cover patterns involving handshake packet loss, something

that is apt to cause problems, such as tests that drop the

client’s first packet and tests that drop the second.

■ h3spec

Tests can easily miss error cases. For HTTP/2, h2spec*5

is an excellent test tool for checking if servers can handle

error cases. I realized that I could easily test error cases

by creating hooks for the Haskell QUIC library. One of the

hooks is shown below.

When transport parameters are created, this hook converts

one of the parameters from one value to another. An error

case can be created by converting to a value that causes

an error. Based on this idea, I have released a tool called

h3spec*6 for testing error cases against QUIC or HTTP/3

servers. At present, it provides 32 QUIC error tests and

16 HTTP/3 error tests. h3spec has been used to test the

Haskell QUIC library as well as other implementations, and

it has thus played a role in making implementations more

stable.

■ QUIC tracker

QUIC tracker is a service that executes a range of tests on public

servers once a day and publishes the results. I registered

our public server for the service and found a lot of bugs.

I was eventually able to pass all test cases except for two

unsupported items.

3.15 Acknowledgments
I would like to thank the following individuals. Kazuho

Oku gave me the idea for generating connected sockets.

Tatsuhiro Tsujikawa discussed the migration API with me.

Robin Marx taught me all about qlog and qvis.

Kazu Yamamoto

Head of Development Group, Research Laboratory, IIJ Innovation Institute Inc.
Dr. Yamamoto is interested in applying the concurrent technology of the Haskell programming language to network programming.
He pens the “QUIC wo Yukkuri Kaisetsu” [QUIC at an Easy Pace] series in Japanese on the IIJ Engineers Blog.

onTransportParametersCreated :: Parameters -> Parameters

29

	3.	Focused Research (2)
	3.1	QUIC and HTTP/3
	3.2	Why Implement it in Haskell?
	3.3	QUIC Streams and Connections
	3.4	Accepting Connections on a Server
	3.5	Threads that Make up a Connection
	3.6	Connected Sockets
	3.7	Closing Connections
	3.8	TLS Handshake
	3.9	Migration
	3.10	ACK Processing Algorithmn
	3.11	Reassembling Streams
	3.12	Flow Control
	3.13	Loss Detection and Congestion Control
	3.14	Testing
	3.15	Acknowledgments

