
© Internet Initiative Japan Inc.

Creating a mac_apt Plugin (Part 1)

*1 macOS (& ios) Artifact Parsing Tool (https://github.com/ydkhatri/mac_apt).

2.1 What is mac_apt?
Digital forensics is so well provided for on Windows that 

free and open source tools alone are sufficient for analyzing 

most artifacts. Yet in the case of macOS—which, like 

Windows, is widely used as a desktop OS—relatively few 

commercial products, not to mention free and open source 

tools, are available.

This probably reflects the relative OS market shares and 

needs within the digital forensics market. But the last few 

years have seen the release of open source forensic analysis 

tools for macOS that implement just enough features to be 

practically useful. In my case, I have been following a tool 

called mac_apt*1 closely.

This tool was developed as a macOS forensic analysis 

framework and can analyze a range of artifacts using over 

40 plugins. It also implements its own APFS and HFS+ file 

system parsers, allowing direct analysis without the disk 

image mounted. So to compare it with tools designed to 

perform analysis on disk images mounted in the OS, mac_

apt obviates the need to install file system drivers, and it 

allows the analyst to perform analysis regardless of what 

OS they are running on the analysis machine. And in 

addition to de facto standard disk image formats like RAW 

and E01, it also supports relatively niche formats like AFF4 

and SPARSEIMAGE. These are used by commercial forensic 

tools as disk image formats.

Conversion tools can be used to convert disk images to any 

number of formats, so analysis tools do not necessarily have 

to support a whole bunch of formats. But because the disk 

images of computers these days often exceed several 

hundred GB in size, converting disk images takes a lot of 

time and disk space. So the ability to analyze disk images 

without converting them is a plus for the analyst.

Many plugins are implemented for mac_apt, allowing 

analysis of many key artifacts. But mac_apt is developed 

almost solely by its creator, Yogesh Khatri, who cannot be 

expected to provide support for all artifacts.

If an artifact is unsupported, it would perhaps be common 

to submit an Issue on the mac_apt development repository 

and wait for someone to volunteer to implement a plugin. 

But if you have some understanding of the artifact’s data 

structure, you might also consider implementing the plugin 

yourself, because as mentioned earlier, mac_apt was 

developed as a forensic analysis framework.

This has been a somewhat lengthy preamble, but I will now 

go over the basics of creating plugins for the mac_apt 

forensic analysis framework for macOS. There is no official 

documentation on creating plugins, so what follows is based 

on the source code of plugins already implemented and 

what I have learned from creating plugins. While mac_apt is 

written in Python, I will not be explaining Python terminology 

and the like here.

2.2 Important File Formats for macOS Forensics
Before we get into creating plugins, let’s look at file formats 

that are often parsed in macOS forensics. macOS and its 

applications use property lists (plists) and SQLite to store 

settings and history data. So naturally, artifact files often 

come in one of these formats (since forensic analysis often 

involves analysis of settings and history).

plist files are mainly used to store simple data like OS and 

application settings and history. They play a role like that 

of the Windows registry, but as they are created for each 

application, they are found in various places on the file 

system. Early plist files used an XML format, but a binary 

format is now the default. On the command line, plutil can 

2. Focused Research (1)

20



Vol. 54May.2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

*2 DB Browser for SQLite (https://sqlitebrowser.org/).

Figure 2: SQLite Example (com.apple.LaunchServices.QuarantineEventsV2)

Figure 1: plist Example (com.apple.dock.plist)

be used to examine the contents of a plist file. Figure 1 

shows an example of using plutil to display com.apple.

dock.plist, which stores the settings for applications on 

the macOS Dock.

SQLite, like plist, is used to record settings and history, 

but it is also used to store slightly larger pieces of data 

such as blobs of sent and received data. It is also used 

in a range of applications including Chrome, and recently 

even in Windows some artifacts are saved in SQLite format. 

DB Browser for SQLite*2 is a convenient way to view the 

data. Figure 2 shows an example of using DB Browser 

to read com.apple.LaunchServices.QuarantineEventsV2, 

which stores information related to the quarantining of 

files downloaded via a Web browser.

2121



© Internet Initiative Japan Inc.

2.3 mac_apt Plugin Structure
2.3.1 Demo Plugin

A demo plugin is provided in the mac_apt plugins folder 

in a file called _demo_plugin.py. This plugin reads the 

file “/System/Library/CoreServices/SystemVersion.plist”, 

gets the value in ProductVersion, displays it on screen, 

and saves the analysis results to a file.

It only performs a simple analysis, but it is just right for 

understanding how plugins are structured, so let’s use it 

as an example to see how plugins work in general.

2.3.2 Properties

Plugin properties are set near the beginning of the plugin 

(immediately after module imports) (Figure 3). Table 1 

explains each of these properties.

Plugin authors can basically set these as they like, but 

__Plugin_Name needs to be unique as it is used to identify the 

plugin. __Plugin_Modes specifies what OS types (MACOS 

or IOS) the plugin supports. Note that the keyword 

“ARTIFACTONLY” can also appear in this property if you 

want to support the analysis of exported artifact files.

Figure 3: Plugin Property Settings

Table 1: Meaning of Plugin Properties

Property name Notes

__Plugin_Name

__Plugin_Friendly_Name

__Plugin_Version

__Plugin_Description

__Plugin_Author

__Plugin_Author_Email

__Plugin_Modes

__Plugin_ArtifactOnly_Usage

Meaning

Plugin name

Friendly name of plugin

Version

Plugin description

Author

Author’s email

OSs supported

Usage info for mac_apt_artifact_only.py

Example

DEMOPLUGIN1

Demo Plugin 1

1.0

Arbitrary string

John Smith

author@example.com

MACOS,IOS,ARTIFACTONLY

Arbitrary string

Must be all caps, cannot include spaces

Not used within the program

Not used within the program

Not used within the program

Not used within the program

22



Vol. 54May.2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

2.3.3 Entry Points

All plugins first call the Plugin_Start(), Plugin_Start_

Standalone(), or Plugin_Start_Ios() function. Table 2 lists 

the plugin entry points for different mac_apt commands.

The demo plugin implements two entry points, Plugin_

Start() and Plugin_Start_Standalone(). And this is consistent 

with the content of the __Plugin_Modes property (Plugin_

Start_Ios() contains only a pass instruction, and IOS does 

not appear in __Plugin_Modes). Next, let’s look at what 

happens at each entry point.

■ Plugin_Start()

Plugin_Start() (Figure 4) takes a mac_info object as an 

argument. This object contains basic macOS information 

(OS version, user list, etc.) obtained from the disk image 

to be analyzed along with basic methods for accessing 

the files on the disk image.

The demo plugin displays the name of the OS on which 

mac_apt is running and the macOS version for which the 

analysis is being performed (lines 40–41). The function 

then sets the artifact file path, pulls the version number 

Table 2: mac_apt Commands and Entry Point Called

Figure 4: The Plugin_Start() Function

mac_apt command Plugin entry point

mac_apt.py

mac_apt_mounted_sys_data.py

mac_apt_artifact_only.py

ios_apt.py

Plugin_Start()

Plugin_Start_Standalone()

Plugin_Start_Ios()

2323



© Internet Initiative Japan Inc.

could be undetermined. For example, if the artifact file is 

located within the user home directory tree, the file path 

will contain a user name and is thus not a fixed string. 

In such cases, you need to use the methods provided by 

mac_apt to get a list of directories and files on the disk 

image and dynamically build artifact file paths.

■ Plugin_Start_Standalone()

Plugin_Start_Standalone() (Figure 5) takes as its first 

argument a list object of artifact files specified on the 

mac_apt_artifact_only.py command line, so this can be 

iterated over to process the artifact files one after the 

other (line 96).

However, if the artifact is made up of multiple files, or if 

the settings result in the artifact file path(s) being 

out of the artifact file using the Process_File() function, 

and displays this on screen (lines 44–46). It then exports 

the artifact file from the disk image and saves it in a folder 

with the same name as the plugin (line 49). Finally, it 

uses the WriteMe() function to save the analysis results 

(line 52).

So at the entry point, once the artifact file path has been 

set, the main tasks are to call a function that performs 

analysis and a function that saves the analysis results 

(see below for details of Process_File(), WriteMe()). Other 

plugins used to perform actual analysis also follow this 

same procedure.

The path of the artifact file analyzed by the demo plugin is 

a fixed string, but depending on the artifact, the file path 

Figure 5: The Plugin_Start_Standalone() Function

24



Vol. 54May.2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

undetermined, you will again need to dynamically build 

the artifact file paths. Since the artifact files are on the 

file system of the OS running mac_apt, you can use 

Python’s standard os module to get the file list and so on.

In the demo plugin, if the file path ends with “SystemVersion.

plist”, the file is parsed by the ReadPlist() method in the 

CommonFunctions module provided by mac_apt (line 

100). If the file is successfully parsed, then after obtaining 

the OS version, the function saves the analysis results 

using the WriteMe() function (lines 101–106). As you can 

see, Process_File() is not called here, but the procedure is 

mostly the same as in Plugin_Start().

Note that the result of parsing a plist file using the ReadPlist() 

method (second return value) is a dictionary object.

2.3.4 The Demo Plugin’s Other Functions

■ Process_File()

A function that parses SystemVersion.plist (Figure 6). 

Parses the artifact file passed in as the second argument 

using the mac_info object’s ReadPlist() method (line 60). 

If successful, calls the GetMacOsVersion() function, 

described below, to get the version number and returns 

it (lines 61–65).

The mac_info object’s ReadPlist() method, like that in the 

CommonFunction module, returns the result of parsing 

the plist as a dictionary object.

■ GetMacOsVersion() 

Gets the OS version from parsed plist data and returns it 

(Figure 7).

Figure 7: The GetMacOsVersion() Function

Figure 6: The Process_File() Function

2525



© Internet Initiative Japan Inc.

■ WriteMe()

A function that saves the analysis results to a file (Figure 8). 

col_info defines the columns used when writing the 

analysis results (line 77). The definition is a list of tuple 

objects. The first element of each tuple is the column 

name and the second is the column’s type. Common type 

values are “DataType.TEXT” and “DataType.INTEGER”. 

In the demo plugin, the first column is named “Version 

info” and contains text, the second is named “Major” and 

contains integers.

The data variable holds the data (list object) to be saved 

(line 79). The length of this list must match the length of 

the columns definition.

The DataWriter object is used to save the analysis results 

in the location and file format specified on the mac_apt 

command line (line 82). The first argument holds information 

such as the save folder, the second holds the table name 

(when saving in SQLite format), the third is the columns 

definition, and the fourth is the artifact file path. But as 

the fourth argument is not used, you can simply pass 

in an empty string. The DataWriter object’s WriteRow() 

method is used to actually write the data.

As the comment on line 90 indicates, however, the above 

process can also be accomplished in a single line using 

the WriteList () function. A look through other plugins 

reveals that most of them use the WriteList() function. 

The first argument is a string giving some details about 

Figure 8: The WriteMe() Function

26



Vol. 54May.2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

the data, but this is only written to logs and is not saved 

in the file. The sixth argument can simply be an empty 

string since, within the WriteList() function, it is used as 

the fourth argument of a DataWriter object.

2.3.5 Naming Rules for Functions etc.

The entry point function names are fixed, but the plugin 

author needs to decide on the names of the other functions 

that perform analysis and save the analysis results. As 

noted earlier, there is no documentation on how plugins 

should be written, but looking at existing plugins, most 

seem to use Pascal case function names, and variable 

names are in snake case. This is good to be aware if you 

want to be consistent with other plugins.

It also looks like analysis functions are often named 

“ProcessXxxx()” or “ParseXxxx()”. And “PrintAll()” is used 

consistently as the name of the function that saves analysis 

results (although the demo plugin uses WriteMe()). This 

function has three arguments. The first is a list object 

holding the analysis results to be saved. The second is an 

object (mac_info.output_params) that holds settings such 

as the save destination and save file format. The third is 

ultimately passed to the WriteList() function as its sixth 

argument, and as such, it appears to be an empty string 

in most cases.

2727



© Internet Initiative Japan Inc.

*3 Are You Docking Kidding Me? (https://posts.specterops.io/are-you-docking-kidding-me-9aa79c24bdc1).

2.4 Finding Artifacts Not Supported by mac_apt
As I mentioned, the creator of mac_apt maintains it almost 

single-handedly, so there are unsupported artifacts. So 

when looking at other analysis tools or reading macOS 

security articles, you may notice artifacts that mac_apt 

does not support.

For example, when reading an article about how an attacker 

could, as a persistence method, replace the path of an 

application in the Dock with the path of a malicious 

program*3, I realized that mac_apt does not provide analysis 

of “~/Library/Caches//Cache.db”. To check whether mac_

apt supports a given artifact, you can look through the list 

of plugins or search the mac_apt source code for the name 

of an artifact file.

When I checked Cache.db on an actual machine, I found 

that it stores not only HTTP but also HTTPS traffic (Figure 

Figure 9: The cfrul_cache_response Table

28



Vol. 54May.2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

9). And not only that, it also stores the HTTP request 

method, HTTP status, HTTP headers, and response body 

(Figures 10 and 11). Information like this can be very 

useful when doing forensics, so it would be well worth 

thinking about implementing a plugin for this.

In the next issue of the IIR, I will discuss the data stored 

in Cache.db in detail and the implementation of a plugin 

for analyzing this artifact file.

Minoru Kobayashi

Forensic Investigator, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ Mr. 
Kobayashi is a member of IIJ-SECT, mainly dealing with digital forensics. He works to improve incident response capabilities and in-house 
technical capabilities. He gives lectures and training sessions at security events both in Japan and abroad, including Black Hat, FIRST TC, 
JSAC, and Security Camp events.

Figure 11: The cfurl_cache_blob_data Table

Figure 10: The cfurl_cache_receiver_data Table

2929


	2.	Focused Research (1)
	2.1	What is mac_apt?
	2.2	Important File Formats for macOS Forensics
	2.3	mac_apt Plugin Structure
	2.3.1	Demo Plugin
	2.3.2	Properties
	2.3.3	Entry Points
	2.3.4	The Demo Plugin’s Other Functions
	2.3.5	Naming Rules for Functions etc.

	2.4	Finding Artifacts Not Supported by mac_apt


