
© Internet Initiative Japan Inc.

Creating a mac_apt Plugin (Part 2)

*1 Focused Research (1) in Internet Infrastructure Review (IIR) Vol.54, “Creating a mac_apt Plugin (Part 1)” (https://www.iij.ad.jp/en/dev/iir/054.html).

In IIR Vol.54, we took a look at the demo plugin provided

by the mac_apt forensic analysis framework for macOS

to understand the basic structure of mac_apt plugins*1. In

this installment, I discuss the data stored in “~/Library/

Caches/<Application Bundle ID>/Cache.db” and go over

the implementation of a mac_apt plugin for analyzing this

artifact. If you haven’t read the article in IIR Vol.54 yet, you

may find it easier to follow along if you go back and read

that first.

2.1 What Information Does Cache.db Hold?
First, we look at the information recorded in Cache.db.

This is a cache of HTTP/HTTPS data transfers made via

APIs like NSURLRequest. The Cache.db file is an SQLite-format

database and holds the data in the database tables shown

in Tables 1–5. The cache data is basically stored in this

database, but data above a certain size is stored as a file

in the fsCacheData directory (Figure 1). This is apparently

called the “CFURL Cache”, because the database table

name starts with “cfurl_cache”.

2. Focused Research (1)

Column Data type

entry_ID

response_object

request_object

proto_props

user_info

The entry ID

BLOB in plist format. Holds the URL accessed, HTTP status, response header, etc.

BLOB in plist format. Holds the URL accessed, access method, request header, etc.

Unknown (used for cache control?)

Unknown (all NULL to the extent this author has checked)

Column Data type

entry_ID

isDataOnFS

receiver_data

The entry ID

Flag indicating the format of the response data from the server
0: Response body from the server is stored in receiver_data.
1: Response body from the server is stored in a file.

Holds the response data from the server (isDataOnFS = 0) or the name of the file in which it has been stored (isDataOnFS = 1).
The file is saved in “~/Library/Caches/<App Bundle ID>/fsCacheData/”. File names are in UUID format.

Column Data type

entry_ID

version

hash_value

storage_policy

request_key

time_stamp

partition

The entry ID

Unknown (all 0 to the extent this author has checked)

Unknown

Unknown (all 0 to the extent this author has checked)

URL of the destination accessed

Timestamp of when the URL was accessed

Unknown (all NULL to the extent this author has checked)

Column Data type

schema_version The schema version (all 202 to the extent this author has checked, except in cases where the table itself does not exist)

Column Data type

cfurl_cache_response Maximum value for entry_ID of cfurl_cache_response?

Table 1: cfurl_cache_blob_data

Table 2: cfurl_cache_receiver_data

Table 3: cfurl_cache_response

Table 4: cfurl_cache_schema_version

Table 5: sqlite_sequence

10

Vol. 55July 2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

*2 The “bplist00” sequence at the start is the plist binary format’s magic number.

Looking at this information, you can check not only the date

and time of program data transfers and the destination URLs

but also the responses received from the servers. User and

program activity histories are crucial to forensic analysis, so

this artifact is a very useful source of information.

2.2 Designing a Plugin
2.2.1 Data to Acquire

Before we get into creating the plugin, let’s look a little

closer at what information we can get from the artifact.

Tables 1–3 indicate we can obtain the data transfer time-

stamp, the destination URL, the client’s request method

and header, the server’s HTTP status and response body,

and the response body from the server. The data in

these tables are linked by a key called entry_ID. And the

“<Application Bundle ID>” part of the file path to where

Cache.db is stored identifies the program that made the

transfer. We need the plugin to collect this information

and save it as an analysis result.

Note that the response_object and request_object in

the cfurl_cache_blob_data table (Table 1) are stored as

plist-format BLOBs (Figure 2)*2. This data should not be left

in plist format when stored in the analysis results. Instead,

it should be parsed to make it easy for the analyst to

determine the contents.

Figure 1: File Structure

Figure 2: Sample response_object

% ls -alR ~/Library/Caches/com.apple.osascript
total 128
drwxr-xr-x 4 macforensics staff 128 2 10 17:36 .
drwx------+ 150 macforensics staff 4800 4 27 15:12 ..
-rw-r--r--@ 1 macforensics staff 65536 5 19 2021 Cache.db
drwxr-xr-x@ 4 macforensics staff 128 2 2 2021 fsCachedData

/Users/macforensics/Library/Caches/com.apple.osascript/fsCachedData:
total 344
drwxr-xr-x@ 4 macforensics staff 128 2 2 2021 .
drwxr-xr-x 4 macforensics staff 128 2 10 17:36 ..
-rw-r--r--@ 1 macforensics staff 116503 11 9 2020 2B1680C0-DAE0-4EA0-9EC0-C4FC7F86A8C0
-rw-r--r--@ 1 macforensics staff 53755 2 2 2021 A391D5EC-9FCF-4993-A0AF-EEF2C871EF6A

1111

© Internet Initiative Japan Inc.

*3 DB Browser for SQLite (https://sqlitebrowser.org/).

Figure 3 shows the result of exporting the request_object

data using DB Browser for SQLite*3 or other software,

parsing it with plutil, the standard macOS command.

It looks like the data we need for forensic analysis is

contained in elements 18 and 19 of the Array. Element 18

is the HTTP request method, and 19 is the HTTP request

header.

Element 19 also holds Base64-encoded data in its “__

hhaa__” field. This is a plist in binary format; Figure 4 shows

the decoded content. It is the same as the HTTP request

header and thus we can conclude that it does not need to

be included in the analysis results. The response_object data

can also be examined in the same manner (Figure 5). In this

case, element 3 of the Array holds the HTTP status and

element 4 holds the HTTP response header.

% plutil -p cfurl_cache_blob_data__request_object_2.bin
{
 "Array" => [
 0 => 0
 1 => {
 "_CFURLString" => "https://www.example.com/"
 "_CFURLStringType" => 15
 }
 2 => 60
 3 => 1
 4 => "__CFURLRequestNullTokenString__"
 5 => 1
 6 => 134
 7 => "__CFURLRequestNullTokenString__"
 8 => "__CFURLRequestNullTokenString__"
 9 => 1
 10 => 0
 11 => 0
 12 => 0
 13 => 0
 14 => 0
 15 => -1
 16 => "__CFURLRequestNullTokenString__"
 17 => 2
 18 => "GET"
 19 => {
 "__hhaa__" => "

YnBsaXN0MDDTAQIDBAYIXxAPQWNjZXB0LUVuY29kaW5nVkFjY2VwdF8QD0FjY2VwdC1
MYW5ndWFnZaEFXxARZ3ppcCwgZGVmbGF0ZSwgYnKhB1MqLyqhCVVqYS1qcAgPISg6PF
BSVlgAAAAAAAABAQAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAXg=="
 "Accept" => "*/*"
 "Accept-Encoding" => "gzip, deflate, br"
 "Accept-Language" => "ja-jp"
 }
 20 => "__CFURLRequestNullTokenString__"
 21 => "__CFURLRequestNullTokenString__"
]
 "Version" => 9
}

% echo
YnBsaXN0MDDTAQIDBAYIXxAPQWNjZXB0LUVuY29kaW5nVkFjY2VwdF8QD0FjY2VwdC1
MYW5ndWFnZaEFXxARZ3ppcCwgZGVmbGF0ZSwgYnKhB1MqLyqhCVVqYS1qcAgPISg6PF
BSVlgAAAAAAAABAQAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAXg== | base64 -d |
plutil -p -
{
 "Accept" => [
 0 => "*/*"
]
 "Accept-Encoding" => [
 0 => "gzip, deflate, br"
]
 "Accept-Language" => [
 0 => "ja-jp"
]
}

% plutil -p cfurl_cache_blob_data__response_object_2.bin
{
 "Array" => [
 0 => {
 "_CFURLString" => "https://www.example.com/"
 "_CFURLStringType" => 15
 }
 1 => 628074307.809312
 2 => 0
 3 => 200
 4 => {
 "__hhaa__" => "

YnBsaXN0MDDdAQIDBAUGBwgJCgsMDQ4QEhQWGBocHiAiJCZcQ29udGVudC1UeXBlVEV
0YWdXWC1DYWNoZVNBZ2VfEBBDb250ZW50LUVuY29kaW5nVlNlcnZlcldFeHBpcmVzXU
NhY2hlLUNvbnRyb2xURGF0ZV5Db250ZW50LUxlbmd0aF1BY2NlcHQtUmFuZ2VzVFZhc
nldTGFzdC1Nb2RpZmllZKEPXxAYdGV4dC9odG1sOyBjaGFyc2V0PVVURi04oRFcIjMx
NDc1MjY5NDcioRNTSElUoRVWNTY4Nzk3oRdUZ3ppcKEZXkVDUyAobnliLzFEMkYpoRt
fEB1UaHUsIDAzIERlYyAyMDIwIDA5OjA1OjA3IEdNVKEdXm1heC1hZ2U9NjA0ODAwoR
9fEB1UaHUsIDI2IE5vdiAyMDIwIDA5OjA1OjA3IEdNVKEhUzY0OKEjVWJ5dGVzoSVfE
A9BY2NlcHQtRW5jb2RpbmehJ18QHVRodSwgMTcgT2N0IDIwMTkgMDc6MTg6MjYgR01U
AAgAIwAwADUAPQBBAFQAWwBjAHEAdgCFAJMAmACmAKgAwwDFANIA1ADYANoA4QDjAOg
A6gD5APsBGwEdASwBLgFOAVABVAFWAVwBXgFwAXIAAAAAAAACAQAAAAAAAAAoAAAAAA
AAAAAAAAAAAAABkg=="
 "Accept-Ranges" => "bytes"
 "Age" => "568797"
 "Cache-Control" => "max-age=604800"
 "Content-Encoding" => "gzip"
 "Content-Length" => "648"
 "Content-Type" => "text/html; charset=UTF-8"
 "Date" => "Thu, 26 Nov 2020 09:05:07 GMT"
 "Etag" => ""3147526947""
 "Expires" => "Thu, 03 Dec 2020 09:05:07 GMT"
 "Last-Modified" => "Thu, 17 Oct 2019 07:18:26 GMT"
 "Server" => "ECS (nyb/1D2F)"
 "Vary" => "Accept-Encoding"
 "X-Cache" => "HIT"
 }
 5 => 1256
 6 => "text/html"
]
 "Version" => 1
}

Figure 3: Result of Parsing the request_object Data

Figure 4: Result of Parsing the request_object’s __hhaa__ Field Figure 5: Result of Parsing the response_object Data

12

Vol. 55July 2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

*4 You can also use the CommonFunctions.ReadPlist() method provided by mac_apt.

The receiver_data field in the cfurl_cache_receiver_data

table (Table 2) holds the response body received from the

server. This information is also useful for forensic analysis, so

we save it in the analysis results. But rather than including

the data in the analysis results in the form of a file saved

in the fsCacheData directory, we should instead export the

file. This avoids unnecessarily increasing the analysis

results file size.

2.2.2 Data Acquisition Method

Next, we consider how to go about acquiring the data.

Since Cache.db is a SQLite database, information can be

retrieved using SQL queries. Given the results above, we

can use the SQL query in Figure 6 to obtain the required

information.

The plist data stored in the response_object and request_

object can be parsed using the Python plistlib module*4.

__hhaa__ is excluded from the parse result.

2.2.3 Plugin Implementation Approach

At this point, we have determined what data to obtain and

how to acquire it, and based on this, we can lay out an

implementation approach for the plugin as shown below.

1. Process a macOS disk image or exported artifacts.

1.1 If processing a disk image, process all artifacts in all

users’ “~/Library/Caches/” directories.

1.2 If processing exported artifacts, process all artifacts in

the specified directory.

2. Save the following data in the analysis results.

2.1 Data obtained via the SQL query in Figure 6

2.2 Results of parsing response_object and request_object

2.3 Application Bundle ID

2.4 In the case of disk images, export the files in the

fsCacheData directory

SELECT entry_ID, time_stamp, request_key, request_object, response_object, isDataOnFS, receiver_data
 FROM cfurl_cache_response JOIN cfurl_cache_blob_data USING (entry_ID)
 JOIN cfurl_cache_receiver_data USING (entry_ID)

Figure 6: SQL Query for Obtaining the Required Data from Cache.db

1313

© Internet Initiative Japan Inc.

*5 cfurl_cache.py (https://github.com/ydkhatri/mac_apt/blob/3e823ee36bdf133c4de3503848435033ee20943d/plugins/cfurl_cache.py).

*6 Note that, if the plugin has been updated since this writing, line numbers in this article may not correspond to those in the current source code.

2.3.2 Entry Points

■ Plugin_Start()

Plugin_Start () is the plugin entry point when you run mac_

apt.py (Figure 8).

mac_info.users holds a list object containing the user

information on the disk image. You can use this to loop

through and process the artifacts for all users (line 179).

But since the same home directory can be configured for

use on multiple accounts, the plugin skips home directories

that have already been processed (lines 180–182).

2.3 Creating the Plugin
Now let’s start creating the plugin. The plugin discussed

here was merged via a Pull Request in July 2021, so you

can find it on the mac_apt GitHub repository*5.

Here, I give an outline of what the plugin does. Please refer

to the source code for further details if necessary*6.

2.3.1 Properties

I set the properties as shown in Figure 7. The plugin

is called CFURLCACHE. As it processes disk images

and exported artifacts, it uses “__Plugin_Modes =

“MACOS,ARTIFACTONLY””.

__Plugin_Name = "CFURLCACHE" # Cannot have spaces, and must be all caps!
__Plugin_Friendly_Name = "CFURL cache"
__Plugin_Version = "1.0"
__Plugin_Description = "Parses CFURL cache and extract date, URL, request, response, and received data."
__Plugin_Author = "Minoru Kobayashi"
__Plugin_Author_Email = "unknownbit@gmail.com"

__Plugin_Modes = "MACOS,ARTIFACTONLY" # Valid values are 'MACOS', 'IOS, 'ARTIFACTONLY'
__Plugin_ArtifactOnly_Usage = 'Provide the path to "/Library/Cache/" folder under user home'

Figure 7: Properties

Figure 8: The Plugin_Start() Function

14

Vol. 55July 2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

For unprocessed home directories, the mac_info object’s

IsValidFolderPath() method is used to check for the

existence of the home directory in the disk image (line

184), and the ListItemsInFolder() method is used to create

a list of directories in “~/Library/Caches/” (line 186).

The IsValidFilePath() method is then used to check for the

existence of Cache.db files in each of the directories (line

191). If the file exists, the ExtractAndReadCFURLCache()

function is called to obtain analysis results for Cache.db and

export the artifact file (line 192). The analysis results are

stored in cfurl_cache_artifacts as a list object.

Once all of the Cache.db files have been analyzed, the

results are stored using the PrintAll() function (line 195).

■ Plugin_Start_Standalone()

Plugin_Start_Standalone() is the plugin entry point when you

run mac_apt_artifact_only.py (Figure 9).

input_files_list contains the name of the directory to be

processed as specified on the command line (line 202).

Beyond that, the function basically runs through the same

process as Plugin_Start(), but with this entry point, the

OpenAndReadCFURLCache() function is called to perform

the analysis instead of the ExtractAndReadCFURLCache()

function (line 212).

2.3.3 Data Analysis

■ ExtractAndReadCFURLCache()

This function opens a Cache.db file in the disk image,

analyzes the data, saves the analysis results, and exports

the artifact file (Figure 10).

Cache.db is opened inside the OpenDbFromImage()

function (line 147). This function uses the connect()

method of the SqliteWrapper class provided by mac_apt

to get a connection to the SQLite database. As this

class is a wrapper around the standard Python sqlite3

Figure 9: The Plugin_Start_Standalone() Function

Figure 10: The ExtractAndReadCFURLCache() Function

1515

© Internet Initiative Japan Inc.

*7 In some cases, depending on the macOS version, there is no cfurl_cache_schema_version table present.

module, you can use sqlite3 methods to execute SQL

queries and so forth.

The data analysis happens not in the

ExtractAndReadCFURLCache() function but in the

ParseCFURLEntry() function. It is set up this way

so that both ExtractAndReadCFURLCache() and

OpenAndReadCFURLCache(), described below, can

use the same processing routine (line 149).

Finally, the ExportFolder() method is used to export the

artifact file (line 150). The first argument is the folder

path to export from, the second is the name of the export

destination folder, and the third is the overwrite flag.

The export destination folder specified by the second

argument is created in the “Export” folder that is created

within the output destination folder specified on the mac_

apt command line. A look at the source code of other

plugins shows that they basically use “__Plugin_Name”

for this. But with CFURL Cache, because there is an

artifact file for each user, the user name is also included

in the export destination folder name.

■ OpenAndReadCFURLCache()

This function opens the exported Cache.db file, analyzes

the data, and saves the analysis results (Figure 11). It

does not export artifact files.

Cache.db is opened inside the OpenDb() function. This function

gets a connection using the mac_apt CommonFunctions

class’s open_sqlite_db_readonly() method. Data analysis is

done by the ParseCFURLEntry() function, as noted above.

■ ParseCFURLEntry()

This function issues a SQL query and retrieves the required

data from Cache.db (Figure 12). It also parses the acquired

data and saves the analysis results.

First, it gets a list of table names, and if a cfurl_cache_

schema_version table exists, it gets the schema version

(lines 118–121). To the extent I have checked, only version

202 is ever used*7.

Next, it uses the SQL query in Figure 6 to get the required

data (lines 125–128). As mentioned above, the request_

object and response_object data are in a binary-format

Figure 11: The OpenAndReadCFURLCache() Function

16

Vol. 55July 2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

plist. The data are analyzed by the ParseRequestObject()

and ParseResponseObject() functions described below

(lines 130–131).

The receiver_data object type depends on what it holds. If

it holds the response body, it will be “bytes”. If it holds the

name of the file (UUID) in the fsCacheData directory, it will

be “str” (lines 132–135).

Finally, it saves the acquired data as an entry in the

analysis results (lines 140–143). The plugin defines the

CfurlCacheItem class to hold analysis results (Figure 13),

and the entry is an instance of that class. The class has

no methods; it is simply there to group the data together.

Figure 12: The ParseCFURLEntry() Function

Figure 13: Class that Holds Analysis Results

1717

© Internet Initiative Japan Inc.

■ ParseRequestObject() and ParseResponseObject()

This function gets data from the request_object and

response_object (Figure 14, Figure 15).

As noted above, the request_object array’s 18th element

holds the HTTP method, and the 19th holds the HTTP

request header (lines 96–97 in Figure 14). We also exclude

the __hhaa__ field (line 100 in Figure 14). Similarly, the

response_object array’s 3rd element is the HTTP status,

and the 4th is the HTTP response header (lines 106–107

in Figure 15).

2.3.4 Saving the Analysis Results

■ PrintAll()

This function saves the analysis results in the format spec-

ified on the command line (Figure 16). cfurl_cache_info

defines the column names and types used when storing

the analysis results (lines 162–164). The analysis data

items are collected into a list object in the same order as

the items in the cfurl_cache_info definition, and in the

final step, the WriteList() function writes the data to a file

(lines 168–171).

2.4 Example of the Plugin in Action
FIgure 17 shows the analysis results from the plugin

discussed here (columns to the right of Received_Data

have been trimmed from the screenshot). I hope you’ll

agree that it is easy to examine the data once the information

is organized like this.

Figure 17: Analysis Results from the Plugin

Figure 16: The PrintAll() Function

Figure 14: The ParseRequestObject() Function Figure 15: The ParseResponseObject() Function

18

Vol. 55July 2022

2. Focused Research (1)

© Internet Initiative Japan Inc.

*8 Workshop slides (https://jsac.jpcert.or.jp/archive/2022/pdf/JSAC2022_workshop_macOS-forensic_en.pdf).

*9 Analysis data (https://jsac.jpcert.or.jp/archive/2022/data/JSAC2022_macos_forensic_workshop_without_malware.7z).

*10 [JSAC2022] Workshop: An Introduction to macOS Forensics with Open Source Software (https://www.youtube.com/watch?v=Mor9EpInrXM).

2.5 Conclusion
This two-part series has walked through the creation of

a mac_apt plugin. While I have provided a broad under-

standing of plugin structure and process flow, I certainly

have not covered all of the APIs mac_apt provides.

Looking at other plugins also would be a great way to

further your understanding.

mac_apt is a powerful forensic analysis tool, but the best

way to get support for more artifacts is to write your own

plugins. As explained in the previous installment, many

artifacts are in plist or SQLite format, so it’s very easy to

look through the data, and the most important advantage

is that you can analyze the data you require for your

purposes in the format of your choice.

Finally, some readers may be more interested in how to go

about reading and making sense of the mac_apt analysis

results than in creating plugins. I would recommend the

presentation slides*8 and analysis data*9 from the macOS

hands-on forensics workshop given at the Japan Security

Analyst Conference 2022 (JSAC2022) as a useful refer-

ence in this case. The workshop used mac_apt analysis

results to create a forensic timeline of malware incursion.

A video of the workshop is also available*10.

Minoru Kobayashi

Forensic Investigator, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Kobayashi is a member of IIJ-SECT, mainly dealing with digital forensics. He works to improve incident response capabilities and
in-house technical capabilities. He gives lectures and training sessions at security events both in Japan and abroad, including Black
Hat, FIRST TC, JSAC, and Security Camp events.

1919

	2.	Focused Research (1)
	2.1	What Information Does Cache.db Hold?
	2.2	Designing a Plugin
	2.2.1	Data to Acquire
	2.2.2	Data Acquisition Method
	2.2.3	Plugin Implementation Approach

	2.3	Creating the Plugin
	2.3.1	Properties
	2.3.2	Entry Points
	2.3.3	Data Analysis
	2.3.4	Saving the Analysis Results

	2.4	Example of the Plugin in Action
	2.5	Conclusion

